13 research outputs found

    Elastic properties of aorta in patients with primary hyperparathyroidism

    No full text
    In this study, we aimed to evaluate whether hyperpara thyroidism affects the elastic properties of aorta, calculated as aortic distensibility and aortic stiffness index

    Papain Loaded Poly(epsilon-Caprolactone) Nanoparticles: In-silico and In-Vitro Studies

    No full text
    Papain is a protease enzyme with therapeutic properties that are very valuable for medical applications. Poly(epsilon-caprolactone) (PCL) is an ideal polymeric carrier for controlled drug delivery systems due to its low biodegradability and its high biocompatibility. In this study, the three-dimensional structure and action mechanism of papain were investigated by in vitro and in silico experiments using molecular dynamics (MD) and molecular docking methods to elucidate biological functions. The results showed that the size of papain-loaded PCL nanoparticles (NPs) and the polydispersity index (PDI) of the NPs were 242.9 nm and 0.074, respectively. The encapsulation efficiency and loading efficiency were 80.4 and 27.2%, respectively. Human embryonic kidney cells (HEK-293) were used for determining the cytotoxicity of papain-loaded PCL and PCL nanoparticles. The in vitro cell culture showed that nanoparticles are not toxic at low concentrations, while toxicity slightly increases at high concentrations. In silico studies, which were carried out with MD simulations and ADME analysis showed that the strong hydrogen bonds between the ligand and the papain provide stability and indicate the regions in which the interactions occur

    Acousto-holographic reconstruction of whole-cell stiffness maps

    No full text
    Accurate assessment of cell stiffness distribution is essential due to the critical role of cell mechanobiology in regulation of vital cellular processes like proliferation, adhesion, migration, and motility. Stiffness provides critical information in understanding onset and progress of various diseases, including metastasis and differentiation of cancer. Atomic force microscopy and optical trapping set the gold standard in stiffness measurements. However, their widespread use has been hampered with long processing times, unreliable contact point determination, physical damage to cells, and unsuitability for multiple cell analysis. Here, we demonstrate a simple, fast, label-free, and high-resolution technique using acoustic stimulation and holographic imaging to reconstruct stiffness maps of single cells. We used this acousto-holographic method to determine stiffness maps of HCT116 and CTC-mimicking HCT116 cells and differentiate between them. Our system would enable widespread use of whole-cell stiffness measurements in clinical and research settings for cancer studies, disease modeling, drug testing, and diagnostics.ISSN:2041-172
    corecore