43 research outputs found

    Feasibility studies for imaging e+^{+}e^{-} annihilation with modular multi-strip detectors

    Full text link
    Studies based on imaging the annihilation of the electron (e^{-}) and its antiparticle positron (e+^{+}) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of e+^{+}e^{-} into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e+^{+} beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging e+^{+}e^{-} annihilations and thus their applicability for gravitational studies of Ps

    the impact of uterine immaturity on obstetrical syndromes during adolescence

    Get PDF
    Pregnant nulliparous adolescents are at increased risk, inversely proportional to their age, of major obstetric syndromes, including preeclampsia, fetal growth restriction, and preterm birth. Emerging evidence indicates that biological immaturity of the uterus accounts for the increased incidence of obstetrical disorders in very young mothers, possibly compounded by sociodemographic factors associated with teenage pregnancy. The endometrium in most newborns is intrinsically resistant to progesterone signaling, and the rate of transition to a fully responsive tissue likely determines pregnancy outcome during adolescence. In addition to ontogenetic progesterone resistance, other factors appear important for the transition of the immature uterus to a functional organ, including estrogen-dependent growth and tissue-specific conditioning of uterine natural killer cells, which plays a critical role in vascular adaptation during pregnancy. The perivascular space around the spiral arteries is rich in endometrial mesenchymal stem-like cells, and dynamic changes in this niche are essential to accommodate endovascular trophoblast invasion and deep placentation. Here we evaluate the intrinsic (uterine-specific) mechanisms that predispose adolescent mothers to the great obstetrical syndromes and discuss the convergence of extrinsic risk factors that may be amenable to intervention

    Design of shape memory alloy-based and tendon-driven actuated fingers towards a hybrid anthropomorphic prosthetic hand

    No full text
    This paper presents the design of tendon-driven actuated fingers using a shape memory alloy for a hybrid anthropomorphic prosthetic hand. The ring and little (pinky) fingers are selected for shape memory activation due to their lower degree of movement during multiple grasping configurations. The fingers' tendon system is based on shape memory alloy (SMA) wires that form artificial muscle pairs for the required flexion/extension of the finger joints. The finger has four degrees of freedom such that three of them are active. An experimental setup was developed to evaluate the performance of the ring and little fingers. An electromyography (EMG) controlled Pulse Width Modulated (PWM) technique is preferred for the actuation of joint motions using a high speed microcontroller

    Mechanical design and analysis of a pneumatic ankle foot orthosis

    No full text
    corecore