456 research outputs found

    New beam for the CERN fixed target heavy ion programme

    Get PDF
    The physicists of the CERN heavy ion community (SPS fixed target physics) have requested lighter ions than the traditional lead ions, to scale their results and to check their theories. Studies have been carried out to investigate the behaviour of the ECR4 for the production of an indium beam. Stability problems and the low melting point of indium required some modifications to the oven power control system which will also benefit normal lead ion production. Present results of the source behaviour and the ion beam characteristics will be presented

    Options for upgrading the intensity of the CERN lead pre-injector ion source

    Get PDF
    CERN's heavy ion pre-injector has been in service since 1994, providing lead ions for fixed target collisions at 177 GeV per nucleon in the SPS. In the LHC era, heavy ion collisions require an increase in the beam brightness, compared to the present injector system of Linac 3, Proton Synchrotron Booster and the Proton Synchrotron. Stacking and cooling ions in a Low Energy Ion Ring should find the largest part of this increase. However, further improvements can be envisaged by upgrading the pre-injector and source. The performance and limitations of the present source and Linac 3 will be discussed, and options for increasing the source brightness will be presented. These options consist of upgrades of the ECR Source to higher frequencies, or its replacement with a Laser Ion Source

    Studies on ECR4 for the CERN ion programme

    Get PDF
    The CERN heavy ion community, and some other high energy physics experiments, are starting to demand other ions, both heavy and light, in addition to the traditional lead ions. Studies of the behaviour of the afterglow for different operation modes of the ECR4 at CERN have been continued to try to understand the differences between pulsed afterglow and continuous operation, and their effect on ion yield and beam reproducibility. The progress in adapting the source and ion beam characteristics to meet the new demands will be presented, as will new information on voltage holding problems in the extraction

    Effect of a Biased Probe on the Afterglow Operation of an ECR4 Ion Source

    Get PDF
    Various experiments have been performed on a 14.5 GHz ECR4 in order to improve the ion yield. The source runs in pulsed afterglow mode, and provides currents ~120 emA of Pb27+ to the CERN Heavy Ion Facility on an operational basis. In the search for higher beam intensities, the effects of a pulsed biased disk on axis at the injection side were investigated with different pulse timing and voltage settings. No proof for absolute higher intensities was seen for any of these modifications. However, the yield from a poorly tuned/low-performing source could be improved and the extracted pulse was less noisy with bias voltage applied. The fast response on the bias implies that increases/decreases are not due to ionisation processes. A good tune for high yield of high charge states during the afterglow coincides with a high plasma potential

    Ion-stimulated gas desorption yields and their dependence on the surface preparation of stainless steel

    Get PDF
    Ion-induced gas desorption yields were investigated for 4.2 MeV/u lead ions incident on 316 LN stainless steel surfaces. Focussed on a possible application for the Low Energy Ion Ring (LEIR) vacuum system, the influence of surface treatments like chemical etching, electropolishing and gold-coating on the desorption yields was studied with accelerator-type vacuum chambers. The surface composition of similar prepared samples was investigated with X-ray Photoemission Spectroscopy (XPS). Desorption yields for H2, CH4, CO, Ar and CO2, which are of fundamental interest for LEIR and future accelerator applications, are reported as a function of impact angle, ion dose and charge state (+27, +53) of the lead ion beam

    Universally diverging Grueneisen parameter and the magnetocaloric effect close to quantum critical points

    Full text link
    At a generic quantum critical point, the thermal expansion α\alpha is more singular than the specific heat cpc_p. Consequently, the "Gr\"uneisen ratio'', \GE=\alpha/c_p, diverges. When scaling applies, \GE \sim T^{-1/(\nu z)} at the critical pressure p=pcp=p_c, providing a means to measure the scaling dimension of the most relevant operator that pressure couples to; in the alternative limit T0T\to0 and ppcp \ne p_c, \GE \sim \frac{1}{p-p_c} with a prefactor that is, up to the molar volume, a simple {\it universal} combination of critical exponents. For a magnetic-field driven transition, similar relations hold for the magnetocaloric effect (1/T)T/HS(1/T)\partial T/\partial H|_S. Finally, we determine the corrections to scaling in a class of metallic quantum critical points.Comment: 4 pages, 1 figure; general discussion on how the Grueneisen exponent measures the scaling dimension of the most relevant operator at any QCP is expande

    Low temperature thermodynamic properties near the field-induced quantum critical point in DTN

    Full text link
    We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field Hc12H_{c1} \approx 2\,T in DTN . A T3/2T^{3/2} behavior in the specific heat and magnetization is observed at very low temperatures at H=Hc1H=H_{c1} that is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at Hc1H_{c1} shows minor deviations from the expected T1/2T^{1/2} behavior. Our experimental study is complemented by analytical calculations and Quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gr\"{u}neisen parameters that are ideal quantities to identify QCPs. Both parameters diverge at Hc1H_{c1} with the expected T1T^{-1} power law. By using the Ehrenfest relations at the second order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.Comment: 11 paged, 10 figures, submitted to PR

    Sequential localization of a complex electron fluid

    Full text link
    Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with two distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.Comment: 21 pages, 4 figures (preprint format

    Degradation Kinetics of Lignocellulolytic Enzymes in a Biogas Reactor Using Quantitative Mass Spectrometry

    Get PDF
    The supplementation of lignocellulose-degrading enzymes can be used to enhance the performance of biogas production in industrial biogas plants. Since the structural stability of these enzyme preparations is essential for efficient application, reliable methods for the assessment of enzyme stability are crucial. Here, a mass-spectrometric-based assay was established to monitor the structural stability of enzymes, i.e., the structural integrity of these proteins, in anaerobic digestion (AD). The analysis of extracts of Lentinula edodes revealed the rapid degradation of lignocellulose-degrading enzymes, with an approximate half-life of 1.5 h. The observed low structural stability of lignocellulose-degrading enzymes in AD corresponded with previous results obtained for biogas content. The established workflow can be easily adapted for the monitoring of other enzyme formulations and provides a platform for evaluating the effects of enzyme additions in AD, together with a characterization of the biochemical methane potential used in order to determine the biodegradability of organic substrates

    Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field

    Full text link
    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect
    corecore