2,604 research outputs found

    Roll tracking effects of G-vector tilt and various types of motion washout

    Get PDF
    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues

    Coherent states for polynomial su(1,1) algebra and a conditionally solvable system

    Full text link
    In a previous paper [{\it J. Phys. A: Math. Theor.} {\bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed su(2)su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1,1)su(1,1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1,1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1,1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.Comment: 2 figure

    Extreme tunability of interactions in a 7^7Li Bose-Einstein condensate

    Full text link
    We use a Feshbach resonance to tune the scattering length a of a Bose-Einstein condensate of 7Li in the |F = 1, m_F = 1> state. Using the spatial extent of the trapped condensate we extract a over a range spanning 7 decades from small attractive interactions to extremely strong repulsive interactions. The shallow zero-crossing in the wing of the Feshbach resonance enables the determination of a as small as 0.01 Bohr radii. In this regime, evidence of the weak anisotropic magnetic dipole interaction is obtained by comparison with different trap geometries

    Construction of classical superintegrable systems with higher order integrals of motion from ladder operators

    Get PDF
    We construct integrals of motion for multidimensional classical systems from ladder operators of one-dimensional systems. This method can be used to obtain new systems with higher order integrals. We show how these integrals generate a polynomial Poisson algebra. We consider a one-dimensional system with third order ladders operators and found a family of superintegrable systems with higher order integrals of motion. We obtain also the polynomial algebra generated by these integrals. We calculate numerically the trajectories and show that all bounded trajectories are closed.Comment: 10 pages, 4 figures, to appear in j.math.phys

    Intertwining relations of non-stationary Schr\"odinger operators

    Get PDF
    General first- and higher-order intertwining relations between non-stationary one-dimensional Schr\"odinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in a RR-separation of variables. The Fokker-Planck and diffusion equation are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.Comment: 18 pages, LaTeX20

    Topological methods for searching barriers and reaction paths

    Full text link
    We present a family of algorithms for the fast determination of reaction paths and barriers in phase space and the computation of the corresponding rates. The method requires the reaction times be large compared to the microscopic time, irrespective of the origin - energetic, entropic, cooperative - of the timescale separation. It lends itself to temperature cycling as in simulated annealing and to activation-relaxation routines. The dynamics is ultimately based on supersymmetry methods used years ago to derive Morse theory. Thus, the formalism automatically incorporates all relevant topological information.Comment: 4 pages, 4 figures, RevTex

    Improved approximate inspirals of test-bodies into Kerr black holes

    Full text link
    We present an improved version of the approximate scheme for generating inspirals of test-bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original "hybrid" scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semi-latus rectum p and eccentricity e) with approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle, iota, during the inspiral. Despite the fact that the resulting inspirals were overall well-behaved, certain pathologies remained for orbits in the strong field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. Firstly, we add certain corrections which ensure the correct behaviour of the fluxes in the limit of vanishing eccentricity and/or 90 degrees inclination. Secondly, we use higher order post-Newtonian formulae, adapted for generic orbits. Thirdly, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of iota. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky based calculations. As an application of the improved scheme we provide a sample of generic Kerr inspirals and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularise under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in source detection.Comment: 25 pages, 14 figures, some typos corrected, short section on conservative corrections added, minor changes for consistency with published versio

    High-precision cavity spectroscopy using high-frequency squeezed light

    Get PDF

    Motion of a spin 1/2 particle in shape invariant scalar and magnetic fields

    Full text link
    We study the motion of a spin 1/2 particle in a scalar as well as a magnetic field within the framework of supersymmetric quantum mechanics(SUSYQM). We also introduce the concept of shape invariant scalar and magnetic fields and it is shown that the problem admits exact analytical solutions when such fields are considered.Comment: 14 page

    Supersymmetry of a Nonstationary Pauli Equation

    Full text link
    The supersymmetry of the electron in both the nonstationary magnetic and electric fields in a two-dimensional case is studied. The supercharges which are the integrals of motion and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli equation are generated.Comment: 12 pages, Late
    • 

    corecore