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We construct integrals of motion for multidimensional classical systems from lad-
der operators of one-dimensional systems. This method can be used to obtain new
systems with higher order integrals. We show how these integrals generate a poly-
nomial Poisson algebra. We consider a one-dimensional system with third order
ladder operators and found a family of superintegrable systems with higher order
integrals of motion. We obtain also the polynomial algebra generated by these
integrals. We calculate numerically the trajectories and show that all bounded tra-
jectories are closed. © 2010 American Institute of Physics.
�doi:10.1063/1.3448925�

I. INTRODUCTION

Over the years, many articles were devoted to superintegrability.1–15 For a review of superin-
tegrability of two-dimensional systems, we refer the reader to Ref. 14. The relation between
constants of motion and ladder operators in classical and quantum mechanics was acknowledged
by several authors.3,5,6,16–24 Detailed discussions of the relation between integrals and ladder
operators for the two-dimensional harmonic oscillator, anisotropic harmonic oscillator, and
Kepler–Coulomb systems were done.17,18 Ladder operators are more used in context of quantum
mechanics. They can provide the wave functions and the energy spectrum of the corresponding
Schrodinger equation and the eigenstates of the annihilation operator are related to coherent
states.25 In quantum mechanics, these raising and lowering operators are also related to super-
charges and supersymmetric quantum mechanics. The quantum superintegrable systems with third
order integrals of motion15,16 were related to supersymmetric quantum mechanics26,27 and higher
order supersymmetric quantum mechanics.28–30 A method to generate quantum superintegrable
systems from supersymmetry was presented in Ref. 31. This method allows to generate systems
with higher order integrals of motion. In a recent article, we discussed how ladder operators can be
used to generate higher order integrals of motion and superintegrable systems in context of quan-
tum mechanics.32 We imposed the separation of variables in Cartesian coordinates and the order of
the ladder operators were arbitrary. These relations between quantum superintegrable systems,
integrals of motion, polynomial algebras, ladder operators, and supersymmetry are interesting and
provide new insight. In the light of these results the study of systems with ladder operators appears
to be important also in regard of superintegrable systems. The classification of systems with first
or second order ladder operators in E2 was discussed.33 Systems with third16,29 and also fourth30

order ladder operators were discussed in context of supersymmetric quantum mechanics.
The purpose of this paper is to discuss how the method developed in context of quantum

mechanics to obtain integrals of motion and polynomial algebras from ladder operators32 can be
applied in classical mechanics. The method allows to obtain multidimensional superintegrable
systems, however, we will focus on two-dimensional systems. We will also discuss systems with
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third order ladder operators. To our knowledge, the study of classical systems with higher order
ladder operators is also an unexplored subject. We will point out that ladder operators appear
important in regard of classical superintegrable systems.

Let us present the organization of this paper. In Sec. II, we will present a method to generate
higher order integrals of motion and new classical superintegrable systems from one-dimensional
systems with ladder operators. We present the general polynomial Poisson algebra obtained from
these integrals of motion. In Sec. III, we consider a system that we studied in an earlier article
concerning classical superintegrable systems in two-dimensional Euclidean space separable in
Cartesian coordinates with a second and a third order integrals.17 We show that this system
possesses third order ladder operators. We use these operators and results of Sec. II to generate
new superintegrable systems. We present their integrals of motion and polynomial Poisson alge-
bras. We obtain their trajectories. They are deformed Lissajous’ figure.34 We show also that all
bounded trajectories are closed.35

Before proceeding with the results let us recall a few important definitions. In classical me-
chanics a Hamiltonian system with Hamiltonian H and integrals of motion Xa,

H = 1
2gikpipk + V�x�,p��, Xa = fa�x�,p��, a = 1, . . . ,n − 1, �1.1�

is called completely integrable �or Liouville integrable� if it allows n integrals of motion �includ-
ing the Hamiltonian� that are well defined functions on phase space, are in involution �H ,Xa�p

=0, �Xa ,Xb�p=0, a ,b=1, . . . ,n−1 and are functionally independent �� , �p is a Poisson bracket�. A
system is superintegrable if it is integrable and allows further integrals of motion Yb�x� , p��,
�H ,Yb�p=0, b=n ,n+1, . . . ,n+k that are also well defined functions on phase space and the inte-
grals �H ,X1 , . . . ,Xn−1 ,Yn , . . . ,Yn+k� are functionally independent. A system is maximally superin-
tegrable if the set contains 2n−1 functions. The integrals Yb are not required to be in evolution
with X1 , . . .Xn−1, nor with each other.

II. LADDER OPERATORS AND INTEGRALS OF MOTION

Let us consider a classical two-dimensional Hamiltonian separable in Cartesian coordinates,

H�x1,x2,P1,P2� = H1�x1,P1� + H2�x2,P2� , �2.1�

for which polynomial ladder operators �Axi
and Axi

+ � exist. These operators satisfy the relations

�Hi,Axi

+ �p = �xi
Axi

+ , �Hi,Axi

− �p = − �xi
Axi

− , �2.2�

�Axi

− ,Axi

+ �p = Pi�Hi�, Axi

− Axi

+ = Axi

+ Axi

− = Qi�Hi�, i = 1,2, �2.3�

where Pi�Hi� and Qi�Hi� are polynomials. These relations are the classical analog of relation
imposed in Ref. 32. They are satisfied for many well known superintegrable systems such the
Harmonic oscillator and the Smorodinsky–Winternitz potentials that allow separation of variables
in Cartesian coordinates. From relation �2.2� the operators f1=Ax1

+m1Ax2

−m2 and f2=Ax1

−m1Ax2

+m2 Poisson
commute with the Hamiltonian H given by Eq. �2.1� if m1�x1

−m2�x2
=0 with m1, m2�Z+. The

following sums are also polynomial integrals of the Hamiltonian H,

I1 = Ax1

+m1Ax2

−m2 − Ax1

−m1Ax2

+m2, I2 = Ax1

+m1Ax2

−m2 + Ax1

−m1Ax2

+m2. �2.4�

By construction the Hamiltonian has the following second order integral from separation of vari-
ables:

K = H1 − H2. �2.5�

The Hamiltonian H given by Eq. �2.1� is thus superintegrable.
We will now interested by the algebraic structure generated by these integrals. In quantum

mechanics, quadratic,36,37 cubic,14–16 and higher order polynomial algebras32 can be written as
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deformed oscillator algebras.38 The Fock-type unitary representations can be used to obtain the
energy spectrum. This is the classical equivalent of the polynomial algebra obtained in Ref. 24.
Equations �2.2� and �2.3� are classical analog of deformed oscillator algebra.38 Such algebras were
discussed by Tsiganov in Ref. 39. Equation �2.3� can also be interpreted as classical analog of the
factorization method in supersymmetric quantum mechanics.40 We construct from integrals given
by Eqs. �2.4� and �2.5� the following polynomial Poisson algebra:

�K,I1�p = 2�I2, �K,I2�p = 2�I1, �I1,I2�p = 2Q1� 1
2 �H + K��m1−1,

Q2� 1
2 �H − K��m2−1�m2

2Q1� 1
2 �H + K��P2� 1

2 �H − K�� − m1
2Q2� 1

2 �H − K��P1� 1
2 �H + K��� .

�2.6�

This is the classical analog of the algebra obtained in Ref. 32. We can relate the polynomial by the
following relations. The polynomial algebra of superintegrable systems in classical mechanics
plays an important role in their classification.41

The method can also be extended in N-dimensions by forming the following integrals:

Iij = Axi

+miAxj

−mj − Axi

−miAxj

+mj, Jij = Axi

+miAxj

−mj + Axi

−miAxj

+mj ,

Kij = Hxi
− Hxj

, 0 � i � j � N . �2.7�

III. CONSTRUCTION OF NEW SUPERINTEGRABLE SYSTEMS

Let us present a system obtained in Ref. 12 and studied in Ref. 13,

H =
P1

2

2
+

P2
2

2
+

�2

2
x2

2 + V�x1� , �3.1�

where the potential V�x1� satisfies a quartic equation,

− 9V�x1�4 + 14�2x1
2V�x1�3 + �6d − 15

�4

2
x1

4	V�x1�2 + �3�6

2
x1

6 − 2d�2x1
2	V�x1�

+ �cx1
2 − d2 − d

�4

2
x1

4 −
�8

16
x1

8	 = 0. �3.2�

This Hamiltonian has two integrals,

A =
P1

2

2
−

P2
2

2
−

�2

2
x2

2 + V�x1� ,

B = − x2P1
3 + x1P1

2P2 + ��2

2
x1

2 − 3V�x1�	x2P1 −
1

�2��2

2
x1

2 − 3V�x1�	Vx1
�x1�P2. �3.3�

In the quantum case V satisfies a fourth order differential equation,16

�2V�4��x1� = 12�2x1V��x1� + 6�V2�x1��� − 2�2x1
2V��x1� + 2�4x1

2, �3.4�

that can be solved in terms of the fourth Painlevé transcendent.42 In general, Eq. �3.2� has four
roots and the expressions for them are quite complicated. A special case occurs if �2, c, and d
satisfy c=23�8b3 /36 and d=�4b2 /33, where b is an arbitrary constant. Then Eq. �3.2� has a double
root, and we obtain
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 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:24:27



V�x1� =
�2

18
�2b + 5x1

2 + �4x1

b + x1

2� . �3.5�

The potentials V�x1� are deformed harmonic oscillators. The Hamiltonian given by Eq. �3.1� with
potential given by Eq. �3.5� reduces to isotropic harmonic oscillator or anisotropic harmonic
oscillator �with ratio of 3:1� when b=0. For V�x1� satisfying Eq. �3.5� the cubic algebra is

�A,B�p = C, �A,C�p = − 4�2B, �B,C�p = 8A3 + 12HA2 − 4H3 − 4
4b2�4

27
A +

4b3�6

729
.

�3.6�

A. Deformed isotropic and anisotropic harmonic oscillator

Let us consider the following one-dimensional systems with potential given by Eq. �3.5�:

H1 =
P1

2

2
+

�2

18
�2b1 + 5x1

2 + �14x1

b1 + x1

2� . �3.7�

Like its quantum equivalent, this system has third order creation and annihilation operators,

ax1

+ = P1
3 − i�x1P1

2 + �b1
2�2

3
+

�2x1
2

3
+

2

3
�1�2x1


b1
2 + x1

2	P1 + i�−
1

3
b1

2�3x1 −
13

27
�3x1

3

−
2

27
b1

2�1

b1

2 + x1
2 −

14

27
�1�3x1

2
b1
2 + x1

2	 , �3.8�

ax1

− = P1
3 + i�x1P1

2 + �b1
2�2

3
+

�2x1
2

3
+

2

3
�1�2x1


b1
2 + x1

2	P1 − i�−
1

3
b1

2�3x1 −
13

27
�3x1

3

−
2

27
b1

2�1

b1

2 + x1
2 −

14

27
�1�3x1

2
b1
2 + x1

2	 , �3.9�

satisfying

�H,ax1

+ �p = i�ax1

+ , �H,ax1

− �p = − i�ax1

− . �3.10�

The results of Sec. II allow us to form the following N-dimensional classical superintegrable
system:

H = �
j=1

N
Pj

2

2
+

�2kj
2

18
�2bj + 5xj

2 + � j4xj

bj + xj

2� . �3.11�

It has ladder operators of the same form given by Eqs. �3.8� and �3.9� in each axis. The polyno-
mials Pj�Hj� and Qj�Hj� are given by

Pj�Hj� = 24i�kjHj
2 + 16

3 i�− bj�
3kj

3 + bj
2�3kj

3�Hj + 2
27 i�4bj

2�5kj
5 − 8bj

3�5kj
5 + 3bj

4�5kj
5�

�3.12�

Qj�Hj� = 2
729�18Hj + �bj − 2�bj� j

2�2�9Hj + bj�2bj − 1�� j
2� . �3.13�

For the case N=2 the integrals are thus given by Eqs. �2.4� and �2.5�. These integrals generate the
polynomial Poisson algebra given by Eq. �2.7� with P1�H1�, P2�H2�, Q1�H1�, and Q2�H2� given by
Eqs. �3.12� and �3.13�. The integrals I1 and I2 are polynomials in the momenta of order 3m1+m2

−1 and 3m1+m2, respectively. The order of the polynomial algebra is 2�3m1+m2−1. In the
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N-dimensional case the integrals are given by Eq. �2.7�. Only 2N−1 of these integrals are func-
tionally independent and this system is maximally superintegrable. The integrals Iij, Jij, and Kij are
polynomials in the momenta of order 3mi+mj −1, 3mi+mj, and 2, respectively.

The trajectories are obtained numerically directly from the equations of motion. We present
trajectories for the cases N=2 and N=3 for specific parameters �Figs. 1–4�. The bounded trajec-
tories are closed and correspond to deformed Lissajous’s figures.

�6 �5 �4 �3 �2 �1 1

�8

�6

�4

�2

FIG. 1. �Color online� A trajectory for V= ��2k1
2 /18��2b1+5x2+�14x
b1+x2�+ ��2k2

2 /18��2b2+5y2+�24y
b2+y2�. Param-
eters: �1=1, �2=1, �=3, k1=1, k2=3, b1=3, b2=5, vxo=1, xo=1, vyo=−3, yo=1, t= �0,20�.
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IV. CONCLUSION

Other methods to obtain superintegrable systems were discussed recently: the method of
coupling constant metamorphosis in context of higher order integrals of motion43 and the method
of symmetry reduction.44,45 In this paper, we constructed for a class of classical systems integrals
of motion from ladder operators. This method allows to generate new classical superintegrable
systems with higher order integrals of motion from one-dimensional Hamiltonian for which we

�6 �5 �4 �3 �2 �1 1

�8

�6

�4

�2

FIG. 2. �Color online� A trajectory for V= ��2k1
2 /18��2b1+5x2+�14x
b1+x2�+ ��2k2

2 /18��2b2+5y2+�24y
b2+y2�. Param-
eters: �1=1, �2=1, �=3, k1=3, k2=4, b1=3, b2=5, vxo=1, xo=1, vyo=−3, yo=1, t= �0,20�.
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�6
�4

�2
0

�8

�6

�4

�2

0

�10

�5

0

FIG. 3. �Color online� A trajectory for V= ��2k1
2 /18��2b1+5x2+�14x
b1+x2�+ ��2k2

2 /18��2b2+5y2+�24y
b2+y2�
+ ��2k3

2 /18��2b3+5z2+�34z
b3+z2�. Parameters: �1=1, �2=1, �3=1, �=3, k1=7, k2=11, k3=4, b1=3, b2=5, b3=7, vxo

=1, xo=1, vyo=−3, yo=1, zo=1, vzo=2, t= �0,20�.
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know the ladder operators. From the requirement that ladder operators satisfy the classical analog
of deformed oscillator algebras, we obtained the polynomial Poisson algebra for the superinte-
grable systems.

We considered the one-dimensional system given by Eq. �3.5� for which the potential satisfies
a quartic equation. This system has third order ladder operators. From this systems and the ladder

�6

�4

�2

0

�8

�6

�4

�2

0

�10

�5

0

FIG. 4. �Color online� A trajectory for V= ��2k1
2 /18��2b1+5x2+�14x
b1+x2�+ ��2k2

2 /18��2b2+5y2+�24y
b2+y2�
+ ��2k3

2 /18��2b3+5z2+�34z
b3+z2�. Parameters: �1=1, �2=1, �3=1, �=3, k1=5, k2=6, k3=2, b1=3, b2=5, b3=7, vxo=1,
xo=1, vyo=−3, yo=1, zo=1, vzo=2, t= �0,20�.
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operators and the method of Sec. II, we constructed the integrals of motion and polynomial
Poisson algebra for a new two-dimensional suprintegrable systems. A family of superintegrable
systems in N dimensions can be generated. We present also the trajectories in the two and three-
dimensional cases and obtain deformed Lissajous figures. All bounded trajectories are closed.

We discuss in this paper systems with third order ladder operators. Classical systems with
higher order ladder operators were not systematically studied. The study of such systems could
provide new superintegrable systems with higher integral of motion.
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