35 research outputs found

    The pygmy field mouse – what does influence food quality?

    Get PDF
    The dominant rodent species in Central European agricultural landscapes are granivorous mouse species and herbivorous common voles. Although our knowledge of European wood mice is relatively good, there is a distinct lack of information on pygmy field mice inhabiting Central and Eastern Europe and Central Asia. In this study, we examine the food quality of pygmy field mice in relation to environmental and population factors, and compare the food quality of related mouse species and common voles living in the same study plots. The dietary quality of the pygmy field mouse is similar to that of other mouse species; however, the food quality of pygmy field mice and common voles differed substantially, with mice having lower and more variable nitrogen content. For both rodent species, factors such as body size, age and sex had no influence on diet quality. Pygmy field mouse diet was mainly dependent on season, while total abundance had greatest influence on common vole diet

    Long-term culture captures injury-repair cycles of colonic stem cells

    Get PDF
    The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop

    The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations

    Get PDF
    Insect bite hypersensitivity (IBH) is a chronic allergic dermatitis common in horses. Affected horses mainly react against antigens present in the saliva from the biting midges, Culicoides ssp, and occasionally black flies, Simulium ssp. Because of this insect dependency, the disease is clearly seasonal and prevalence varies between geographical locations. For two distinct horse breeds, we genotyped four microsatellite markers positioned within the MHC class II region and sequenced the highly polymorphic exons two from DRA and DRB3, respectively. Initially, 94 IBH-affected and 93 unaffected Swedish born Icelandic horses were tested for genetic association. These horses had previously been genotyped on the Illumina Equine SNP50 BeadChip, which made it possible to ensure that our study did not suffer from the effects of stratification. The second population consisted of 106 unaffected and 80 IBH-affected Exmoor ponies. We show that variants in the MHC class II region are associated with disease susceptibility (praw = 2.34 × 10−5), with the same allele (COR112:274) associated in two separate populations. In addition, we combined microsatellite and sequencing data in order to investigate the pattern of homozygosity and show that homozygosity across the entire MHC class II region is associated with a higher risk of developing IBH (p = 0.0013). To our knowledge this is the first time in any atopic dermatitis suffering species, including man, where the same risk allele has been identified in two distinct populations

    Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations.</p> <p>Results</p> <p>We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), <it>DRA </it>and <it>DQA</it>, in the genus <it>Equus </it>with the addition of novel alleles identified in plains zebra (<it>E. quagga</it>, formerly <it>E. burchelli</it>). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, <it>DRA </it>allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the <it>DQA </it>locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (<it>d</it><sub>N</sub><it>/d</it><sub>S</sub>) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (<it>d</it><sub>N </sub><<it>d</it><sub>S</sub>). However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the <it>DQA</it>, supported the hypothesis of positive selection acting on specific sites.</p> <p>Conclusions</p> <p>Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the <it>DQA</it>, positive selection was occurring at antigen binding sites, suggesting that a few selected residues may play a significant role in equid immune function. Future studies in natural equid populations will be valuable for understanding the functional significance of the uniquely diverse <it>DRA </it>locus and for elucidating the mechanism maintaining diversity at these MHC loci.</p

    Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments

    Get PDF
    Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.[br/] Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further

    Efficient age determination: how freezing affects eye lens weight of the small rodent species Arvicola terrestris

    Full text link
    Age determination of animals by measuring the weight of their eye lenses is a widely used method in wildlife biology. In general, it is recommended to prepare lenses immediately after trapping to avoid errors in the age estimation due to decomposition of lens tissue. However, in many field studies, large numbers of animals need to be trapped over long periods of time in huge areas and by many different field workers. Therefore, the immediate preparation of eye lenses imposes a considerable logistic constraint that could be avoided by prior freezing of trapped animals. To assess the impact of freezing, weights of lens of frozen and unfrozen eyes of 114 Arvicola terrestris were compared pair wise. The frozen lenses weighed at average 3.3% (95% CI: 2.4–4.1%) more than the unfrozen ones from the same animals. Freezing time, weight of lenses and mean temperature of the trapping day as an indicator of decomposition speed did not affect the freezing-induced weight increase. Age estimates based on weights of unfrozen lenses varied between 24 and 445 days. Estimates based on frozen lenses were systematically higher. Applying a constant correction factor of 1.033−1 for the weight of frozen lenses corrects this overestimation of age. We conclude that age determination with frozen lenses of small rodents can yield valid age estimates if a correction factor for freezing is applied. Thus, age determination can be organised much more efficiently in field studies, which is highly advantageous for many ecological, agricultural and epidemiological research projects

    Brain is the predilection site of Toxoplasma gondii in experimentally inoculated pigs as revealed by magnetic capture and real-time PCR

    Full text link
    Pigs represent an important source of food in many countries, and undercooked pork containing tissue cysts is one of the most common sources of Toxoplasma gondii infection for humans. A magnetic capture method for the isolation of T. gondii DNA and quantitative real-time PCR targeting the 529 bp TOXO repeat element were used to estimate the parasite burden in different tissues of pigs experimentally infected with T. gondii oocysts, and to determine the predilection sites of T. gondii in this host species. The highest concentration of T. gondii DNA was found in brain tissues, equivalent to [median] 553.7 (range 3857.7–121.9) parasites per gram, followed by lungs, heart and dorsal muscles with median values corresponding to 0.3 (range 61.3–0.02); 2.6 (range 7.34–0.37) and 0.6 (range 2.81–0.31) parasites per gram of tissue, respectively. Skeletal muscles from fore and hindlimb, liver and kidney presented very low infection burdens equivalent to [median] ≤0.2 parasites per gram of tissues, and no parasite DNA could be detected in the spleen. This study contributes to understanding the value of different pig tissues as a source of T. gondii infection for humans and shows that the brain, while not being of major importance as human food source, may represent a first-line selection tissue when performing non-serological surveys (e.g. bioassays, histopathological, immunohistochemical or molecular studies) to detect T. gondii infections in pigs
    corecore