826 research outputs found
Resonance distribution in open quantum chaotic systems
In order to study the resonance spectra of chaotic cavities subject to some
damping (which can be due to absorption or partial reflection at the
boundaries), we use a model of damped quantum maps. In the high-frequency
limit, the distribution of (quantum) decay rates is shown to cluster near a
``typical'' value, which is larger than the classical decay rate of the
corresponding damped ray dynamics. The speed of this clustering may be quite
slow, which could explain why it has not been detected in previous numerical
data.Comment: 4 pages. Compared with version 2, we have slightly modified the
figures, corrected some misprints, and added the values for the fits in
figure
Soils of the Hawaii Agricultural Experiment Station, University of Hawaii: Soil Survey, Laboratory Data, and Soil Descriptions
Benchmark Soils Project technical report 4Soils of 16 research sites in the University of Hawaii's agricultural research station network are described in detail. The sites are on the islands of Kauai, Oahu, Maui, and Hawaii. Soil series in the soil orders Mollisols, Oxisols, Vertisols, Inceptisols, Ultisols, Histisols, and Entisols are described. Soil maps of the stations are shown. Tables provide a soil profile description and laboratory data for the predominant soil series at each site, the text discusses the characteristics of the soil types within the series, along with their capability classifications, and related soils or variants at the sites are described
Low-loss Materials for high Q-factor Bragg Reflector Resonators
A Bragg resonator uses dielectric plates within a metallic cavity to confine
the energy within a central free space region. The importance of the
permittivity is shown with a better Q-factor possible using higher permittivity
materials of larger intrinsic dielectric losses. This is because the electric
energy in the reflectors decreases proportionally to the square root of
permittivity and the coupling to the metallic losses decrease linearly. In a
sapphire resonator with a single reflector pair a Q-factor of 2.34x10^5 is
obtained, which may be improved on by up to a factor of 2 using higher
permittivity materials
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: Holistic design approach, design considerations and specifications
High-accuracy three-dimensional miniature components and microstructures are increasingly in demand in the sector of electro-optics, automotive, biotechnology, aerospace and information-technology industries. A rational approach to mechanical micro machining is to develop ultra-precision machines with small footprints. In part 1 of this two-part paper, the-state-of-the-art of ultra-precision machines with micro-machining capability is critically reviewed. The design considerations and specifications of a five-axis ultra-precision micro-milling machine—UltraMill—are discussed. Three prioritised design issues: motion accuracy, dynamic stiffness and thermal stability, formulate the holistic design approach for UltraMill. This approach has been applied to the development of key machine components and their integration so as to achieve high accuracy and nanometer surface finish
Competition between spin and charge polarized states in nanographene ribbons with zigzag edges
Effects of the nearest neighbor Coulomb interaction on nanographene ribbons
with zigzag edges are investigated using the extended Hubbard model within the
unrestricted Hartree-Fock approximation. The nearest Coulomb interaction
stabilizes a novel electronic state with the opposite electric charges
separated and localized along both edges, resulting in a finite electric dipole
moment pointing from one edge to the other. This charge-polarized state
competes with the peculiar spin-polarized state caused by the on-site Coulomb
interaction and is stabilized by an external electric field.Comment: 4 pages; 4 figures; accepted for publication in Phys. Rev. B; related
Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm
Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry sensitive shifts in target gene networks
Latos, P. A., Sienerth, A. R., Murray, A., Senner, C. E., Muto, M., Ikawa, M., . . . Hemberger, M. (2015). Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry sensitive shifts in target gene networks. Genes and Development, 29(23), 2435-2448. doi:10.1101/gad.268821.11
Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease
AbstractUnlike most other cell types, neurons preferentially metabolize glucose via the pentose phosphate pathway (PPP) to maintain their antioxidant status. Inhibiting the PPP in neuronal cell models causes cell death. In rodents, inhibition of this pathway causes selective dopaminergic cell death leading to motor deficits resembling parkinsonism. Using postmortem human brain tissue, we characterized glucose metabolism via the PPP in sporadic Parkinson's disease (PD), Alzheimer's disease (AD), and controls. AD brains showed increased nicotinamide adenine dinucleotide phosphate (NADPH) production in areas affected by disease. In PD however, increased NADPH production was only seen in the affected areas of late-stage cases. Quantifying PPP NADPH-producing enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase by enzyme-linked immunosorbent assay, showed a reduction in the putamen of early-stage PD and interestingly in the cerebellum of early and late-stage PD. Importantly, there was no decrease in enzyme levels in the cortex, putamen, or cerebellum of AD. Our results suggest that down-regulation of PPP enzymes and a failure to increase antioxidant reserve is an early event in the pathogenesis of sporadic PD
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling.
published_or_final_versio
Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis.
During early pregnancy in the mouse, nidatory estrogen (E2) stimulates endometrial receptivity by activating a network of signaling pathways that is not yet fully characterized. Here, we report that bone morphogenetic proteins (BMPs) control endometrial receptivity via a conserved activin receptor type 2 A (ACVR2A) and SMAD1/5 signaling pathway. Mice were generated to contain single or double conditional deletion of SMAD1/5 and ACVR2A/ACVR2B receptors using progesterone receptor (PR)-cre. Female mice with SMAD1/5 deletion display endometrial defects that result in the development of cystic endometrial glands, a hyperproliferative endometrial epithelium during the window of implantation, and impaired apicobasal transformation that prevents embryo implantation and leads to infertility. Analysis of Acvr2a-PRcre and Acvr2b-PRcre pregnant mice determined that BMP signaling occurs via ACVR2A and that ACVR2B is dispensable during embryo implantation. Therefore, BMPs signal through a conserved endometrial ACVR2A/SMAD1/5 pathway that promotes endometrial receptivity during embryo implantation
- …