185 research outputs found

    Unitarity Bounds in AdS_3 Higher Spin Gravity

    Full text link
    We study SL(N,R) Chern-Simons gauge theories in three dimensions. The choice of the embedding of SL(2,R) in SL(N,R), together with asymptotic boundary conditions, defines a theory of higher spin gravity. Each inequivalent embedding leads to a different asymptotic symmetry group, which we map to an OPE structure at the boundary. A simple inspection of these algebras indicates that only the W_N algebra constructed using the principal embedding could admit a unitary representation for large values of the central charge.Comment: 1+23 pages, Version 3 Appendix B revise

    Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations

    Get PDF
    Classical conformal blocks naturally appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3/CFT2AdS_{3}/CFT_{2} correspondence, they are related to classical bulk actions and are used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlev\'e VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ\tau-function. We also discuss how the c=1c = 1 expansion of the τ\tau-function leads to a novel approach to calculate the 4-point classical conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli space and monodromies, numerical and analytic checks; v2: added refs, fixed emai

    A note on the Virasoro blocks at order 1/c

    Get PDF
    We derive an explicit expression for the 1/c1/c contribution to the Virasoro blocks in 2D CFT in the limit of large cc with fixed values of the operators' dimensions. We follow the direct approach of orthonormalising, at order 1/c1/c, the space of the Virasoro descendants to obtain the blocks as a series expansion around z=0z=0. For generic conformal weights this expansion can be summed in terms of hypergeometric functions and their first derivatives with respect to one parameter. For integer conformal weights we provide an equivalent expression written in terms of a finite sum of undifferentiated hypergeometric functions. These results make the monodromies of the blocks around z=1z=1 manifest.Comment: 13 pages; v2: added references to previous wor

    Second-Order Formalism for 3D Spin-3 Gravity

    Full text link
    A second-order formalism for the theory of 3D spin-3 gravity is considered. Such a formalism is obtained by solving the torsion-free condition for the spin connection \omega^a_{\mu}, and substituting the result into the action integral. In the first-order formalism of the spin-3 gravity defined in terms of SL(3,R) X SL(3,R) Chern-Simons (CS) theory, however, the generalized torsion-free condition cannot be easily solved for the spin connection, because the vielbein e^a_{\mu} itself is not invertible. To circumvent this problem, extra vielbein-like fields e^a_{\mu\nu} are introduced as a functional of e^a_{\mu}. New set of affine-like connections \Gamma_{\mu M}^N are defined in terms of the metric-like fields, and a generalization of the Riemann curvature tensor is also presented. In terms of this generalized Riemann tensor the action integral in the second-order formalism is expressed. The transformation rules of the metric and the spin-3 gauge field under the generalized diffeomorphims are obtained explicitly. As in Einstein gravity, the new affine-like connections are related to the spin connection by a certain gauge transformation, and a gravitational CS term expressed in terms of the new connections is also presented.Comment: 40 pages, no figures. v2:references added, coefficients of eqs in apppendix D corrected, minor typos also corrected, v3:Version accepted for publication in Classical and Quantum Gravit

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies
    corecore