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Abstract

We derive an explicit expression for the 1/c contribution to the Virasoro blocks in 2D CFT in

the limit of large c with fixed values of the operators’ dimensions. We follow the direct approach

of orthonormalising, at order 1/c, the space of the Virasoro descendants to obtain the blocks as

a series expansion around z = 0. For generic conformal weights this expansion can be summed

in terms of hypergeometric functions and their first derivatives with respect to one parameter.

For integer conformal weights we provide an equivalent expression written in terms of a finite

sum of undifferentiated hypergeometric functions. These results make the monodromies of the

blocks around z = 1 manifest.
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1 Introduction

Conformal symmetry is a powerful tool to constrain the correlators in two-dimensional

CFT. It implies that four-point functions of primary fields on the sphere are given by

(possibly infinite) sums of conformal blocks1, which are functions of the complex har-

monic ratio: each block encodes the contributions of all the Virasoro descendants of a

primary field. Given the central charge c and the conformal dimensions hi and h of the

external and internal primary fields, conformal symmetry determines in principle the full

functional dependence of the blocks on the harmonic ratio z. The infinite dimensionality

of the 2D conformal algebra, which makes this powerful statement possible, also makes

the task of computing conformal blocks particularly difficult. Multiple efforts have been

devoted to this task since the seminal work of [1], but the general form of Virasoro

blocks for generic values of c remains unknown. Various perturbative expansions of the

blocks can be generated via recursion relations [2–4]. Combinatorial formulas for the

coefficients in the z-expansion of the blocks have been found in [5], based on the AGT

correspondence [6] between 4d supersymmetric gauge theories and 2d CFT.

When the CFT admits a holographic dual, it is interesting to study the conformal

blocks in the limit of large central charge. It is well known that in the c → ∞ limit with

fixed hi and h – a limit that we will denote as the LLLL limit – the conformal blocks

reduce to the global ones, associated with the projective subgroup of the local conformal

group. This result can be extended in various directions: one can consider the so called

HHLL limit, in which one keeps fixed the dimensions of the internal and of two (light)

external operators and sends to infinity the dimensions hL of the two remaining (heavy)

external operators, keeping the ratio hH/c fixed when c → ∞. The leading contribution

to the blocks in this regime has been derived in [7, 8], and the subleading corrections

have been studied in [9–12]. One could also consider a classical limit in which all the

dimensions hi and h are rescaled together with c [13–15]. Conformal blocks have also

been analysed from a bulk perspective exploiting their connection with geodesic Witten

diagrams and Wilson lines [16–26].

In this technical note we focus on the LLLL regime and derive exact expressions

for the correction to the Virasoro blocks at order 1/c. Our main motivation comes

from holography, since this correction contributes to the connected part of correlators

in the supergravity approximation. In Section 2 we compute the blocks by a direct

method, summing over the Virasoro descendants that contribute at the desired order

in the c → ∞ limit. This produces the result (2.21) given as a series expansion in the

“direct channel” z → 0. In Section 3 we also make various attempts at summing the

z-series to have access to the behaviour of the blocks also away from z = 0. We first

1We use the terms conformal and Virasoro block as synonymous.
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decompose the blocks into three contributions – denoted as fa, fb, fc in (3.1) – according

to their dependence on the external dimensions hi. Two first two terms, fa and fb,

were computed with the Wilson line approach in [24], and we verify the agreement with

our results. An explicit expressions for the last term was recently derived in [26] by

analytically continuing to a generic dimension h the result for the W2 minimal model

obtained via the Wilson line approach developed in [25]. Here we provide two alternative

exact expressions for fc. The first (3.13) applies to generic real values of the internal

dimension h, but involves derivatives of generalised hypergeometric functions with respect

to one of their parameters. We also check that this result agrees with that of [26], thus

providing a further non-trivial confirmation of the Wilson-line approach at the quantum

level. Then we find that for integer values of h the block can be written as a finite sum

of undifferentiated hypergeometric functions (see (3.16)). We also make some comments

on the somewhat surprising singularity structure of the result: we find that the 1/c

correction to the block has a leading singularity around z = 1 that goes like log2(1− z),

as opposed to the log(1− z)-singularity of the c0 contribution. Since terms proportional

to log2(1 − z) cannot arise in the expansion of the correlator in the crossed (z → 1)

channel, we speculate that these singularities have to cancel when an infinite series of

conformal blocks is summed to produce a physical correlator.

2 Perturbative Virasoro blocks at large c

Let us consider a 2D CFT and focus on the correlator

〈O1(z1)O1(z2)O2(z3)O2(z4)〉 =
1

z2h1

12 z̄2h̄1

12

1

z2h2

34 z̄2h̄2

34

G(z, z̄) , (2.1)

where Oi are primary operators, zij = zi − zj , and z is the following projective invariant

cross ratio

z =
z12z34
z13z24

. (2.2)

We can use projective invariance to send z1 → ∞, z2 → 1 and z4 → 0, so the cross

ratio is identified with z3. We denote with Ph,h̄ the projector on the subspace spanned

by the Virasoro descendants of the primary state |h, h̄〉. By inserting this projector in

the correlator above, we isolate the contribution of a specific Virasoro block to the full

correlator

〈O1(∞)O1(1)Ph,h̄O2(z)O2(0)〉 = C11hCh22 z
h−2h2Vh(z)z̄

h̄−2h̄2 Ṽh̄(z̄) , (2.3)

where 〈O1(∞) . . .〉 = limz1→∞ z2h1

1 z̄2h̄1

1 〈O1(z1) . . .〉, Ciih are the 3-point couplings between

the exchanged operator Oh and the external operators Oi with i = 1, 2. The factor of zh,
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z̄h̄ are just a convention so as to normalise to 1 the Virasoro blocks Vh(z), Ṽh̄(z̄) in the

z, z̄ → 0 limit.

The most naive approach to the derivation of Vh(z) is to try and construct the pro-

jector Ph,h̄ by using an orthonormal basis spanning the space of descendants of |h〉

Lqn
−n . . . L

q1
−1|h〉 , (2.4)

where for notational simplicity we focused on the holomorphic sector. It is well known

that this is a difficult task in general, but it is doable in perturbation theory in the large

central charge limit. The reason is that the norm of the states in (2.4) is proportional

to cq2+...+qn and so the elements of the orthonormal basis are suppressed by a factor of c

for each Virasoro generator with mode lower than −1. Thus in the strict c → ∞ limit,

it is sufficient to focus on the descendants obtained by acting with L−1, which implies

that at leading order in c the Virasoro blocks reduce to the the global conformal blocks.

Here we are interested in the first subleading correction, so we need to consider the space

spanned by descendants that have at most one L−s generator with s ≥ 2. At level q we

have to deal with the following states

Hq =
{

Lq
−1|h〉 , L−2L

q−2
−1 |h〉 , . . . , L−sL

q−s
−1 |h〉 , . . . , L−q|h〉

}

. (2.5)

A convenient orthogonal basis is |s〉q, with s = 1, . . . , q, where

|1〉q = Lq
−1|h〉 ,

|s〉q = L−sL
q−s
−1 |h〉 −

s−1
∑

j=1

α
(j)
(q,s)(h)|j〉q with s = 2, . . . , q .

(2.6)

Since q〈s|s〉q ∼ c whenever s > 1, all α
(j)
(q,s)’s are of order 1/c except for j = 1 where we

have a coefficient α
(1)
(q,s) of order 1. So at leading order the norm of |s〉q comes from its

first term in (2.6)

q〈1|1〉q = q!(2h)q ,

q〈s|s〉q = 〈h|Lq−s
1 [Ls, L−s]L

q−s
−1 |h〉+O(c0)

=
c

12
s(s2 − 1)〈h|Lq−s

1 Lq−s
−1 |h〉+O(c0)

=
c

12
s(s2 − 1)(q − s)!(2h)q−s +O(c0) , s > 1 ,

(2.7)

where we denote by (h)q the rising Pochhammer symbol

(h)q ≡
Γ(h+ q)

Γ(h)
. (2.8)
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Similarly we can calculate the leading part of the mixing coefficient α
(1)
(q,s)(h) that is the

only one contributing at order O(c0)

α
(1)
(q,s)(h) =

q〈1|L−sL
q−s
−1 |h〉

q〈1|1〉q
= [h(s+ 1) + (q − s)]

(2h)q−s

(2h)q
+O(c−1) . (2.9)

A simple way to compute the correlators appearing in (2.7) and (2.9) is to use the

standard conformal Ward identity (see for example Chapter 6 of [27]), which states that

in a correlator containing primary operators at the points zi and a Virasoro descendant

evaluated at z, the operators L−n can be replaced by the differential operators L−n

L−n → L−n ≡
∑

i

[

(n− 1)hi

(zi − z)n
−

∂zi
(zi − z)n−1

]

. (2.10)

For n = 1 it is convenient to write L−1 as ∂z, which is equivalent to −
∑

i ∂zi thanks

to translation invariance. Acting with the appropriate ordered string of L−n’s on the

two-point function 〈Oh(z1)Oh(z2)〉, and then taking z1 → ∞, z2 → 0, leads to the results

in (2.7) and (2.9).

Then we can write the approximate projector on the Virasoro block of Oh as

Ph =
∞
∑

q=1

|1〉q q〈1|

q〈1|1〉q
+

∞
∑

q=2

q
∑

s=2

|s〉q q〈s|

q〈s|s〉q
+ . . . , (2.11)

where, again, we are focusing just on the holomorphic part. The first term yields the

leading (global) block

V
(0)
h (z) = 2F1(h, h; 2h; z) . (2.12)

We now focus on the second term that captures the subleading 1/c correction V
(1)
h

V
(1)
h (z) = z2h2−h z̄2h̄2−h̄

∞
∑

q=2

q
∑

s=2

〈O1(∞)O1(1)|s〉q q〈s|O2(z)O2(0)〉

C11hCh22 q〈s|s〉q
. (2.13)

Here we need to calculate the numerator and the denominator to the leading order, that is

respectively at O(c0) and O(c); the subleading correction in any of the two will contribute

to Vh at order O(c−2) and so can be neglected. To compute the three-point function

〈O1(∞)O1(1)|s〉q = 〈O1(∞)O1(1)L−sL
q−s
−1 |h〉 − α

(1)
(q,s)(h)〈O1(∞)O1(1)L

q
−1|h〉+O(c−1) ,

(2.14)

we can use again the operators (2.10), apply them on the three-point function

〈O1(z1)O1(z2)Oh(z3)〉 =
C11h

z2h1−h
12 zh13 z

h
23

, (2.15)
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and then take z1 → ∞, z2 → 1, z3 → 0. This gives

〈O1(∞)O1(1)L−sL
q−s
−1 |h〉 = C11h [h1(s− 1) + (h+ q − s)] (h)q−s (2.16)

and

〈O1(∞)O1(1)L
q
−1|h〉 = C11h (h)q . (2.17)

One thus obtains, keeping only the O(c0) contribution in the large c limit

〈O1(∞)O1(1)|s〉q
C11h

≃
(

[h1(s− 1) + (h+ q − s)] (h)q−s − (h)q α
(1)
(q,s)(h)

)

≡ B(q,s)(h1; h) .

(2.18)

By using (2.9) for the mixing coefficient α
(1)
(q,s) we have

B(q,s)(hi; h) =

{

[hi(s− 1) + (h+ q − s)] (h)q−s − [h(s + 1) + (q − s)]
(2h)q−s

(2h)q
(h)q

}

.

(2.19)

Similarly we find

q〈s|O2(z)OL(0)〉

Ch22
= zh−2h2+q z̄h̄−2h̄2 B(q,s)(h2; h) . (2.20)

Thus we can write the 1/c correction V
(1)
h (z) to the full Virasoro block as follows

V
(1)
h (z) =

12

c

∞
∑

q=2

[

q
∑

s=2

B(q,s)(h1; h)B(q,s)(h2; h)

s(s2 − 1)(q − s)! (2h)q−s

]

zq . (2.21)

A closed form expression for all the coefficients in the z-expansion of V
(1)
h (z) was obtained

recently in [26] (see eqs. (4.40) and (4.42)), based on the approach developed in [25]. It is

straightforward to check by using Mathematica that (2.21) agrees with the result of [26]

as an expansion around z = 0.

3 Exact Virasoro blocks at large c

The result (2.21) allows one to easily derive the behaviour of the conformal block around

z = 0. It might be useful, in particular when applying the conformal bootstrap method,

to have a non-perturbative control over V
(1)
h (z) away from z = 0, and for this purpose

one needs to sum the double series in (2.21). This is easily done for the identity block

(h = 0) and one obtains the result in eq. (2.36) of [4]: this is nothing but the global

block of the stress tensor T , which is the only quasi-primary among the descendants of

the identity that contributes at order c−1.
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For general h performing the summation in closed form is non-trivial. One can dis-

tinguish three terms in (2.21), according to their dependence on the external conformal

dimensions h1 and h2:

V
(1)
h (z) =

12

c
[fa(h; z) h1h2 + fb(h; z)(h1 + h2) + fc(h; z)] . (3.1)

Re-organising the sums as
∑

∞

q=2

∑q

s=2 →
∑

∞

m=0

∑

∞

s=2 with m = q − s, one finds

fa(h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m!

s− 1

s(s+ 1)

(h)m(h)m
(2h)m

, (3.2)

fb(h; z) = f
(1)
b (h; z)− f

(2)
b (h; z) , (3.3a)

f
(1)
b (h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m! s(s+ 1)

(h+m)(h)m(h)m
(2h)m

, (3.3b)

f
(2)
b (h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m!

[

h +m

s
−

m

s+ 1

]

(h)m(h)m+s

(2h)m+s

, (3.3c)

fc(h; z) = f (1)
c (h; z)− 2f (2)

c (h; z) + f (3)
c (h; z) , (3.4a)

f (1)
c (h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m! s(s2 − 1)

[(h+m)(h)m]
2

(2h)m
, (3.4b)

f (2)
c (h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m! s(s2 − 1)
(h(s+ 1) +m)

(h+m)(h)m(h)m+s

(2h)m+s

, (3.4c)

f (3)
c (h; z) =

∞
∑

m=0

∞
∑

s=2

zm+s

m! s(s2 − 1)
(h(s+ 1) +m)2

(2h)m[(h)m+s]
2

[(2h)m+s]2
. (3.4d)

Using the series representation of the generalised hypergeometric functions

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞
∑

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
, (3.5)

one sees that the m-series can be summed in terms of 3F2 for the case of f
(3)
c (h; z) and

in terms of 2F1 for all other cases. The remaining sum over s can also be easily done for

fa(h; z) and f
(1)
b (h; z), where the m and s-dependence factorise, and for f

(2)
b (h; z), where

one exploits a partial cancellation between the two terms in the square bracket in (3.3c).

One thus obtains:

fa(h; z) = −

(

2 +
(2− z) log(1− z)

z

)

2F1(h, h; 2h; z) (3.6)

6



and

f
(1)
b (h; z) = h

(

1 +
(1− z) log(1− z)

z
−

z

2

)

2F1(h, h+ 1; 2h; z) , (3.7a)

f
(2)
b (h; z) =

z2

2

∞
∑

m=0

(h)m+1(h)m+2

(2h)m+2

zm

m!
=

z2

4

h(h + 1)

2h+ 1
2F1(h+ 1, h+ 2; 2h+ 2; z) . (3.7b)

The full fb(h; z) can be simplified to

fb(h; z) = h 2F1(h, h; 2h; z) + h
(1− z) log(1− z)

z
2F1(h, h+ 1; 2h; z) . (3.8)

The above results for fa(h; z) and fb(h; z) agree with the ones derived with a different

method in [24]. The same expressions can be derived by expanding at first order in hH/c

the HHLL blocks at order O(c0) computed in [8].

The genuinely new term is fc(h; z), and it is also the hardest to compute. In [24] the

first few terms in the expansion around z = 0 were given and it can be easily checked

that these terms agree with (2.21). Of the three contributions f
(i)
c (h; z) with i = 1, 2, 3,

only f
(1)
c (h; z) can be easily summed; f

(2)
c (h; z) and f

(3)
c (h; z) can be re-organised as a

sum of series over s containing hypergeometrics of the 2F1 and 3F2-type. All the series

are of the form

p+1F̂q(a1, . . . , ap, α; b1; . . . , bq; z) ≡

≡

∞
∑

s=1

zs

s

∏

p(ap)s
∏

q(bq)s
p+1Fq(a1 + s, . . . , ap + s, α; b1 + s, . . . , bq + s; z) ,

(3.9)

where p = q = 1 for f
(2)
c (h; z) and p = q = 2 for f

(3)
c (h; z); ai, bi are functions of h. To

sum these series we can use the identity [28]

∞
∑

s=0

(β)s z
s

s!

∏

p(ap)s
∏

q(bq)s
p+1Fq(a1 + s, . . . ap + s, α; b1 + s, . . . bq + s; z) =

= p+1Fq(a1, . . . ap, α+ β; b1, . . . bq; z) ,

(3.10)

and the fact that
d

dβ
(β)s|β=0 = (s− 1)! (3.11)

so that

p+1F̂q(a1, . . . , ap, α; b1; . . . , bq; z) =
d

dβ
p+1Fq(a1, . . . ap, α+ β; b1, . . . bq; z)|β=0 . (3.12)

7



Collecting all the terms we arrive at a final general expression for fc(h; z):

fc(h; z) = −
(h− 1)2

2
2F1(h, h; 2h; z)−

h2

2

(1− z)2 log(1− z)

z
2F1(h + 1, h+ 1; 2h; z)

− h2(z − 2) 2F̂1(h+ 1, h+ 1; 2h; z)−
2h(2h− 1)

z
2F̂1(h, h+ 1; 2h− 1; z)

+
2h(2h− 1)

z
2F̂1(h− 1, h+ 1; 2h− 2; z)

+
h2

2
(z − 2) 3F̂2(h+ 1, h+ 1, 2h; 2h, 2h; z) (3.13)

+
2(2h− 1)2

z

(

3F̂2(h, h, 2h; 2h− 1, 2h− 1; z)

+ 3F̂2(h− 1, h− 1, 2h; 2h− 2, 2h− 2; z)− 2 3F̂2(h− 1, h, 2h; 2h− 2, 2h− 1; z)
)

.

In Appendix A we show how this result can also be obtained from the integral formula

of [24]. A formula that is similar in spirit to (3.13) follows from the approach of [26]:

fc(h; z) =−
h2

2
2F1(h, h; 2h; z)−

h2

2

(1− z)2 log(1− z)

z
2F1(h+ 1, h+ 1; 2h; z)

+ h(h− 1)
[

2F̂1(h, h; 2h; z) + 2F̃1(h, h; 2h; z)
]

,
(3.14)

with 2F̂1 defined as in (3.12) and

2F̃1(a, b; c; z) ≡
d

dβ
2F1(a, b; c+ β; z)|β=0 . (3.15)

We have checked that (3.13) and (3.14) agree for several values of h; this guarantees that

the results of the Wilson-line approach are also valid non-perturbatively in z.

As the behaviour of the generalised hypergeometric functions around z = 1 is known

for generic values of the parameters (see for example [29]), one could use either (3.13) or

(3.14) to infer the singularity structure of general conformal blocks. In many applications,

and especially in theories admitting holographic duals, it is useful to consider primaries

with integer dimensions, and one might thus ask if a simpler form for fc could be obtained

for integer h. The fact that B(q,s)(hi = 0; h = 1) = 0 implies that fc(h = 1, z) = 0.

Inspecting the behaviour of fc for various integer values of h ≥ 2, one finds that fc
contains four type of terms: terms containing respectively log2(1− z), Li2(z), log(1− z)

times a rational function of z, or terms containing only rational functions. The log2-terms

only come from the last term in the first line of (3.13). The Li2-terms come from the

functions 3F̂2 and they can always be expressed as linear combinations of undifferentiated

hypergeometric functions 3F2, with constant coefficients: a closed form expression for

these coefficients, for generic integer h, can be obtained by trial and error. Subtracting
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this linear combination from fc, one can similarly generate the log-terms of the remainder

by a linear combination of 2F1: an educated guess is sufficient to determine all coefficients

but one, which can be inferred by looking at the z → 0 limit. Remarkably, one verifies

that also the rational part of fc is reproduced. Finally we arrive at the following explicit

expression for fc, which we conjecture to be valid for any integer h ≥ 2:

fc(h; z) = −
(h− 1)2

2
2F1(h, h; 2h; z)−

h2

2

(1− z)2 log(1− z)

z
2F1(h+ 1, h+ 1; 2h; z)

+ (−1)hh(h− 1)
h−1
∑

k=0

(h)k
h+ k

1

k!
3F2(h, h, h− k; 2h, 2h; z) (3.16)

+ h

h−1
∑

k=1

(−1)k
(

h+k−1
h−1

)

(

h−2
h−k−1

) 2F1(h, h− k; 2h; z) + b(h) 2F1(h, h; 2h; z) ,

with

b(h) =
1

2
− h+ (−1)h−1h (h− 1)

h−1
∑

k=0

(h)k
k!(h+ k)

− h
h−1
∑

k=1

(−1)k
(

h+k−1
h−1

)

(

h−2
h−k−1

) . (3.17)

With the help of the Mathematica package developed in [30], we have checked that (3.13)

and (3.16) agree up to h = 10 exactly in z. We have also checked that the expansion of

(3.16) around z = 0 is in agreement with (3.4) for generic h up to order z20.

As mentioned at the beginning of this section, we can use these results to derive the

monodromies around z = 1 of the Virasoro block at order 1/c from the knowledge of the

non-analytic behaviour of the hypergeometric functions. This is particularly straightfor-

ward in the case of integer conformal weights where we can use (3.16) (together with (3.6)

and (3.8) which are valid in general). A new feature of the 1/c corrected Virasoro block

is the presence of terms proportional to log2(1 − z), which are absent in the global

blocks. Using known results for the non-analytic behaviour of 2F1 [31], one finds that

the log2(1− z) terms of fa, fb, fc are

fa(h; z) ≃
Γ(2h)

Γ2(h)

2− z

z
2F1(h, h; 1; 1− z) log2(1− z) ,

fb(h; z) ≃ h(h− 1)
Γ(2h)

Γ2(h)

1− z

z
2F1(h, h+ 1; 2; 1− z) log2(1− z) ,

fc(h; z) ≃
h2(h− 1)2

4

Γ(2h)

Γ2(h)

(1− z)2

z
2F1(h+ 1, h+ 1; 3; 1− z) log2(1− z) .

(3.18)

The large c expansion of a CFT correlator generically contains terms with logarithms,

which are related to the 1/c corrections to the conformal dimensions of multiparticle

operators. However there is no room, at order 1/c, for terms with the logarithm squared

9



such as the ones appearing in (3.18). This probably means that in a large c 2D CFT

the correlators always involve an infinite number of Virasoro primaries so as to avoid

the appearance of the log2 that are present in each block. If possible, it would of course

be very interesting to generalise what has been done by using the global blocks (see for

instance [32,33]) to the case of the Virasoro blocks and exploit the full Virasoro algebra

in the holographic reconstruction of AdS3 physics.
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A Relation with the Wilson line approach

In [24] the authors used the Wilson line approach [23] to provide a compact integral

expression for the large c Virasoro block, see eqs. (3.19) and (3.20) of the paper men-

tioned above2. It is straightforward to show that from this formulation one can find the

same type of series that we encountered in the main text and that can be summed by

using (3.9).

The strategy is as follows: eq. (3.20) of [24] involves four integrals (over the two

punctures z5 and z6 of the exchanged state Op and over the variables w1, w2 included in

the definition of T ); one can use the standard OPE expansions of Op(z5)Op(z6) ∼ z
−2hp

56

and the stress tensor appearing in 〈T T 〉 to write the integrand in (3.20) explicitly; finally

one can fix a gauge for the position of the external states as done in Section 2, perform

the integrations over w1, w2, which are straightforward, and rewrite the remaining two

integrals in terms of the variables y5 = z5/z and y6 = 1/z6 which both run in the interval

[0, 1].

The integrals for the terms that depend on the conformal weights h1, h2 of the external

states have been already performed in [24] and correspond to the contributions in (3.2)

2Eq. (3.20) of [24] should have an extra factor of z−1

21
z−1

43
and the overall factor of (3.24) should read

1/24 instead of 1/2.

10



and (3.3). Thus we can focus on the part of the integrand independent of h1 and h2

fc(h; z) =
(h− 1)

2z

Γ2(2h)

Γ4(h)

1
∫

0

dy5

1
∫

0

dy6 (1− y5)
h−2yh−2

5 (1− y6)
h−2yh−2

6 (1− y5y6)
−2h

×
{

− y5y6
[

(1− y5)(1− y6)z + y5y6(1− z)2 log(1− z)
]

+

y25
[

y26(z − 2)z + 2y6 − 1
]

log(1− y6z)+

y26
[

y25(z − 2)z + 2y5 − 1
]

log(1− y5z)+
[

−y25y
2
6(z − 2)z − 4y5y6 + 2(y5 + y6)− 1

]

log(1− y5y6z)
}

.

(A.1)

We notice that it is divided in three different types of terms: contributions proportional

to log(1 − y5y6z), the ones proportional to either log(1 − y5z) or log(1 − y6z) and those

without any such logarithms. In the latter case the integration over y5 and y6 can be

performed straightforwardly and, by using the integral definition of the Gauss hypergeo-

metric function, one obtains the first line of (3.13). The terms proportional to log(1−y5z)

and log(1 − y6z) yield the same result: it is convenient to start integrating the variable

that is not present in the logarithm, then expand the logarithm in series for small yi and

integrate each term. In this way one obtains exactly a series of the type of (3.9), which

generates the terms proportional to 2F̂1 in (3.13). Finally one can treat in a similar

fashion also the terms in the integrand proportional to log(1 − y5y6z). After expanding

the logarithm in series, the first integral (over y5 for instance) yields terms with a Gauss

hypergeometric function and then the second one (over y6) is a Euler type of integral

that yields a generalised hypergeometric 3F2. All coefficients conspire to produce a series

of the type of (3.9), so the final result can be written in terms of 3F̂2. By combining all

the contributions one obtains (3.13).
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