49 research outputs found

    Direct magnetic resonance arthrography of the knee: utility of axial traction

    Get PDF
    The purpose of this study was to determine the impact of axial traction during acquisition of direct magnetic resonance (MR) arthrography examination of the knee in terms of joint space width and amount of contrast material between the cartilage surfaces. Direct knee MR arthrography was performed in 11 patients on a 3-T MR imaging unit using a T1-weighted isotropic gradient echo sequence in a coronal plane with and without axial traction of 15kg. Joint space widths were measured at the level of the medial and the lateral femorotibial joint with and without traction. The amount of contrast material in the medial and lateral femorotibial joint was assessed independently by two musculoskeletal radiologists in a semiquantitative manner using three grades (‘absence of surface visualization, ‘partial surface visualization or ‘complete surface visualization'). With traction, joint space width increased significantly at the lateral femorotibial compartment (mean = 0.55mm, p = 0.0105) and at the medial femorotibial compartment (mean = 0.4mm, p = 0.0124). There was a trend towards an increased amount of contrast material in the femorotibial compartment with axial traction. Direct MR arthrography of the knee with axial traction showed a slight and significant increase of the width of the femorotibial compartment with a trend towards more contrast material between the articular cartilage surface

    Assessment of occlusive arterial disease of abdominal aorta and lower extremities arteries: value of multidetector CT angiography using an adaptive acquisition method

    Get PDF
    We evaluated 16-detector-row CT in the assessment of occlusive peripheral arterial disease (PAD) of the abdominal aorta and lower extremities using an adaptive method of acquisition to optimise arterial enhancement especially for the distal foot arteries. Thirty-four patients underwent transcatheter angiography (TCA) and CT angiography within 15days. For each patient, table speed and rotation were selected according to the calculated optimal transit time of contrast material obtained after a single bolus test and two dynamic acquisitions at aorta and popliteal arteries. Analysis included image quality and detection of stenosis equal or greater than 50% on a patient basis and on an arterial segment basis. Sensitivity and specificity of CT were calculated with the TCA considered as the standard of reference. CT was conclusive in all segments with no technical failures even in difficult cases with occluded bypasses and aneurysms. On patient-basis analysis, the overall sensitivity and specificity to detect significant stenosis greater than 50% were both 100%. Segmental analysis shows high values of sensitivity and specificity ranging from 91 to 100% and from 81 to 100%, respectively, including distal pedal arteries. Sixteen-detector-row CT angiography using an adaptive acquisition improves the image quality and provides a reliable non-invasive technique to assess occlusive peripheral arterial disease, including distal foot arterie

    Transthyretin Is Dysregulated in Preeclampsia, and Its Native Form Prevents the Onset of Disease in a Preclinical Mouse Model

    Get PDF
    Preeclampsia is a major pregnancy complication with potential short- and long-term consequences for both mother and fetus. Understanding its pathogenesis and causative biomarkers is likely to yield insights for prediction and treatment. Herein, we provide evidence that transthyretin, a transporter of thyroxine and retinol, is aggregated in preeclampsia and is present at reduced levels in sera of preeclamptic women, as detected by proteomic screen. We demonstrate that transthyretin aggregates form deposits in preeclampsia placental tissue and cause apoptosis. By using in vitro approaches and a humanized mouse model, we provide evidence for a causal link between dysregulated transthyretin and preeclampsia. Native transthyretin inhibits all preeclampsia-like features in the humanized mouse model, including new-onset proteinuria, increased blood pressure, glomerular endotheliosis, and production of anti-angiogenic factors. Our findings suggest that a focus on transthyretin structure and function is a novel strategy to understand and combat preeclampsia

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds

    Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease

    Get PDF
    The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to β-pleated sheet aggregates of the amyloid-β (Aβ) peptide in vitro. The in vivo retention of PiB in brains of people with Alzheimer's disease shows a regional distribution that is very similar to distribution of Aβ deposits observed post-mortem. However, the basis for regional variations in PiB binding in vivo, and the extent to which it binds to different types of Aβ-containing plaques and tau-containing neurofibrillary tangles (NFT), has not been thoroughly investigated. The present study examined 28 clinically diagnosed and autopsy-confirmed Alzheimer's disease subjects, including one Alzheimer's disease subject who had undergone PiB-PET imaging 10 months prior to death, to evaluate region- and substrate-specific binding of the highly fluorescent PiB derivative 6-CN-PiB. These data were then correlated with region-matched Aβ plaque load and peptide levels, [3H]PiB binding in vitro, and in vivo PET retention levels. We found that in Alzheimer's disease brain tissue sections, the preponderance of 6-CN-PiB binding is in plaques immunoreactive to either Aβ42 or Aβ40, and to vascular Aβ deposits. 6-CN-PiB labelling was most robust in compact/cored plaques in the prefrontal and temporal cortices. While diffuse plaques, including those in caudate nucleus and presubiculum, were less prominently labelled, amorphous Aβ plaques in the cerebellum were not detectable with 6-CN-PiB. Only a small subset of NFT were 6-CN-PiB positive; these resembled extracellular ‘ghost’ NFT. In Alzheimer's disease brain tissue homogenates, there was a direct correlation between [3H]PiB binding and insoluble Aβ peptide levels. In the Alzheimer's disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [3H]PiB binding, insoluble Aβ peptide levels, 6-CN-PiB- and Aβ plaque load, but not with measures of NFT. These results demonstrate, in a typical Alzheimer's disease brain, that PiB binding is highly selective for insoluble (fibrillar) Aβ deposits, and not for neurofibrillary pathology. The strong direct correlation of in vivo PiB retention with region-matched quantitative analyses of Aβ plaques in the same subject supports the validity of PiB-PET imaging as a method for in vivo evaluation of Aβ plaque burden

    Outcome of long-axis percutaneous sacroplasty as first-line treatment of sacral insufficiency fractures : P219

    No full text
    Purpose: To assess the clinical outcome of patients who were subjected to long-axis sacroplasty as first line treatment for sacral insufficiency fractures. Methods and materials: Nineteen patients with unilateral (n = 3) or bilateral (n = 16) sacral fractures were involved. Under local anaesthesia, each patient was subjected to CT guided sacroplasty using the long-axis approach through a single entry point. An average of 6 ml of PMMA was delivered along the path of each sacral fracture. For each individual patient, the VAS pain score before sacroplasty and at 1, 4, 24, and 48 weeks after the procedure was obtained. Furthermore, the use of analgesics (narcotic/non-narcotic) along with the evolution of post interventional patient mobility before and after sacroplasty was also recorded. Results: The mean pre-procedure VAS score was 8 ± 1.9. This has rapidly declined in the first week after the procedure (mean 4 ± 1.5) followed by gradual decrease along the rest of follow-up period at 4 weeks (mean 3 ± 1.2), 24 weeks (mean 2 ± 1.3), and 48 weeks (mean 1.3 ± 1.4), respectively. Eleven (58%) patients were under narcotic analgesia before sacroplasty, whereas, 8 (42%) patients were using non-narcotics. Corresponding values after the procedure were 2/19 (10%) (narcotic) and 10/19 53% (non-narcotic). Seven (37%) patients did not address post-procedure analgesic use. The evolution of post interventional mobility was favourable in the study group since they revealed a significant improvement in their mobility point scale. Conclusion: Long-axis percutaneous sacroplasty is a suitable minimally invasive treatment option for patients who present with sacral insufficiency fractures. Future studies with larger patient number are warranted to grasp any potential limitations of this therapeutic approach
    corecore