468 research outputs found
A sensitive survey for 13CO, CN, H2CO and SO in the disks of T Tauri and Herbig Ae stars
We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in
42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region.
CO J=2-1 is observed simultaneously to indicate the level of confusion
with the surrounding molecular cloud. The bandpass also contains two
transitions of ortho-HCO, one of SO and the CO J=2-1 line which
provide complementary information on the nature of the emission.
While CO is in general dominated by residual emission from the cloud,
CN exhibits a high disk detection rate % in our sample. We even report CN
detection in stars for which interferometric searches failed to detect
CO, presumably because of obscuration by a foreground, optically thick,
cloud. Comparison between CN and o-HCO or SO line profiles and intensities
divide the sample in two main categories. Sources with SO emission are bright
and have strong HCO emission, leading in general to [HCO/CN].
Furthermore, their line profiles, combined with a priori information on the
objects, suggest that the emission is coming from outflows or envelopes rather
than from a circumstellar disk. On the other hand, most sources have
[HCO/CN], no SO emission, and some of them exhibit clear
double-peaked profiles characteristics of rotating disks. In this second
category, CN is likely tracing the proto-planetary disks. From the line flux
and opacity derived from the hyperfine ratios, we constrain the outer radii of
the disks, which range from 300 to 600 AU. The overall gas disk detection rate
(including all molecular tracers) is , and decreases for fainter
continuum sources.
This study shows that gas disks, like dust disks, are ubiquitous around young
PMS stars in regions of isolated star formation, and that a large fraction of
them have AU.Comment: 31 pages (including 59 figures
Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars II: Stars in Oph and upper Scorpius
We attempt to determine the molecular composition of disks around young
low-mass stars in the Oph region and to compare our results with a
similar study performed in the Taurus-Auriga region. We used the IRAM 30 m
telescope to perform a sensitive search for CN N=2-1 in 29 T Tauri stars
located in the Oph and upper Scorpius regions. CO J=2-1 is
observed simultaneously to provide an indication of the level of confusion with
the surrounding molecular cloud. The bandpass also contains two transitions of
ortho-HCO, one of SO, and the CO J=2-1 line, which provides
complementary information on the nature of the emission. Contamination by
molecular cloud in CO and even CO is ubiquitous. The CN detection
rate appears to be lower than for the Taurus region, with only four sources
being detected (three are attributable to disks). HCO emission is found
more frequently, but appears in general to be due to the surrounding cloud. The
weaker emission than in Taurus may suggest that the average disk size in the
Oph region is smaller than in the Taurus cloud. Chemical modeling shows
that the somewhat higher expected disk temperatures in Oph play a direct
role in decreasing the CN abundance. Warmer dust temperatures contribute to
convert CN into less volatile forms. In such a young region, CN is no longer a
simple, sensitive tracer of disks, and observations with other tracers and at
high enough resolution with ALMA are required to probe the gas disk population.Comment: 18 pages, 5 figures, accepted for publication in A&
Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions
We report new dynamical masses for 5 pre-main sequence (PMS) stars in the
L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region
of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are
absolute measurements of the stars' masses and are independent of their
effective temperatures and luminosities. Seven of the stars have masses
solar masses, thus providing data in a mass range with little data, and of
these, 6 are measured to precision . We find 8 stars with masses in the
range 0.09 to 1.1 solar mass that agree well with the current generation of PMS
evolutionary models. The ages of the stars we measured in the Taurus SFR are in
the range 1-3 MY, and MY for those in L1688. We also measured the
dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's
Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of
the targets are so large that they cannot be reconciled with reported values of
their luminosity and effective temperature. We suggest that these targets are
themselves binaries or triples.Comment: 20 page
Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths
International audienceWe performed sub-arcsecond high-sensitivity nterferometric observations of the thermal dust emission at 1.4 mm and 2.8 mm in the disks surrounding LkCa 15 and MWC 480, with the new 750 m baselines of the IRAM PdBI array. This provides a linear resolution of about 60 AU at the Taurus distance. We report the existence of a cavity of about 50 AU radius in the inner disk of LkCa 15. Whereas LkCa 15 emission is optically thin, the optically thick core of MWC 480 is resolved at 1.4 mm with a radius of about 35 AU, constraining the dust temperature. In MWC 480, the dust emission is coming from a colder layer than the CO emission, most likely the disk mid-plane. These observations provide direct evidence of an inner cavity around LkCa 15. Such a cavity most probably results from the tidal disturbance created by a low mass companion or large planet at about 30 AU from the star. These results suggest that planetary system formation is already at work in LkCa 15. They also indicate that the classical steady-state viscous disk model is a too simplistic description of the inner 50 AU of ''proto-planetary'' disks, and that the disk evolution is coupled to the planet formation process. The MWC 480 results indicate that a proper estimate of the dust temperature and size of the optically thick core are essential to determine the dust emissivity index
CI observations in the CQ Tau proto-planetary disk: evidence for a very low gas-to-dust ratio ?
Gas and dust dissipation processes of proto-planetary disks are hardly known.
Transition disks between Class II (proto-planetary disks) and Class III (debris
disks) remain difficult to detect. We investigate the carbon chemistry of the
peculiar CQ Tau gas disk. It is likely a transition disk because it exhibits
weak CO emission with a relatively strong millimeter continuum, indicating that
the disk might be currently dissipating its gas content. We used APEX to
observe the two CI lines at 492GHz and 809 GHz in the disk orbiting CQ Tau. We
compare the observations to several chemical model predictions. We focus our
study on the influence of the stellar UV radiation shape and gas-to-dust ratio.
We did not detect the CI lines. However, our upper limits are deep enough to
exclude high-CI models. The only available models compatible with our limits
imply very low gas-to-dust ratio, of the order of a few, only. These
observations strengthen the hypothesis that CQ Tau is likely a transition disk
and suggest that gas disappears before dust.Comment: 5 pages, 5 figures, accepted for publication in A&
A Census of the Young Cluster IC 348
We present a new census of the stellar and substellar members of the young
cluster IC 348. We have obtained images at I and Z for a 42'x28' field
encompassing the cluster and have combined these measurements with previous
optical and near-infrared photometry. From spectroscopy of candidate cluster
members appearing in these data, we have identified 122 new members, 15 of
which have spectral types of M6.5-M9, corresponding to masses of 0.08-0.015
M_sun by recent evolutionary models. The latest census for IC 348 now contains
a total of 288 members, 23 of which are later than M6 and thus are likely to be
brown dwarfs. From an extinction-limited sample of members (A_V<=4) for a
16'x14' field centered on the cluster, we construct an IMF that is unbiased in
mass and nearly complete for M/M_sun>=0.03 (<=M8). In logarithmic units where
the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses
down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M_sun, and
then declines into the substellar regime. In comparison, the similarly-derived
IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak
near 0.8 M_sun and steadily declines to lower masses. The distinctive shapes of
the IMFs in IC 348 and Taurus are reflected in the distributions of spectral
types, which peak at M5 and K7, respectively. These data provide compelling,
model-independent evidence for a significant variation of the IMF with
star-forming conditions.Comment: 47 pages, 14 figures, 3rd para of 4.5.3 has been added, this is final
version in press at ApJ, also found at
http://cfa-www.harvard.edu/sfgroup/preprints.htm
CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks
Molecular line emission from protoplanetary disks is a powerful tool to
constrain their physical and chemical structure. Nevertheless, only a few
molecules have been detected in disks so far. We take advantage of the enhanced
capabilities of the IRAM 30m telescope by using the new broad band correlator
(FTS) to search for so far undetected molecules in the protoplanetary disks
surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC
480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480
disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM
array, with derived column densities of the order of 10^{12}cm^{-2}. We also
obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss
the observational results by comparing them to column densities derived from
existing chemical disk models (computed using the chemical code Nautilus) and
based on previous nitrogen and sulfur-bearing molecule observations. The
observed column densities of HC3N are typically two orders of magnitude lower
than the existing predictions and appear to be lower in the presence of strong
UV flux, suggesting that the molecular chemistry is sensitive to the UV
penetration through the disk. The CCS upper limits reinforce our model with low
elemental abundance of sulfur derived from other sulfur-bearing molecules (CS,
H2S and SO).Comment: 8 pages, 4 figures, 3 tables, Accepted for publication in Ap
A Test of Pre-Main Sequence Evolutionary Models Across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tau
We present spatially separated optical spectra of the components of the young
hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0".25 ~
35 AU) were obtained with the Faint Object Spectrograph aboard the Hubble Space
Telescope. Spectra of GG Tau Ba and Bb (separation 1".48 ~ 207 AU) were
obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck
telescopes. The components of this mini-cluster, which span a wide range in
spectral type (K7 - M7), are used to test both evolutionary models and the
temperature scale for very young, low mass stars under the assumption of coeval
formation. Of the evolutionary models tested, those of Baraffe et al. (1998,
A&A, 337, 403) yield the most consistent ages when combined with a temperature
scale intermediate between that of dwarfs and giants. The version of the
Baraffe et al. models computed with a mixing length nearly twice the pressure
scale height is of particular interest as it predicts masses for GG Tau Aa and
Ab that are in agreement with their dynamical mass estimate.
Using this evolutionary model and a coeval (at 1.5 Myrs) temperature scale,
we find that the coldest component of the GG Tau system, GG Tau Bb, is
substellar with a mass of 0.044 +/- 0.006 Msun. This brown dwarf companion is
especially intriguing as it shows signatures of accretion, although this
accretion is not likely to alter its mass significantly. GG Tau Bb is currently
the lowest mass, spectroscopically confirmed companion to a T Tauri star, and
is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star
forming region.Comment: 25 pages, 6 figures, accepted for publication in The Astrophysical
Journa
Dynamical Masses of T Tauri Stars and Calibration of PMS Evolution
We have used the high sensitivity and resolution of the IRAM interferometer
to produce sub-arcsecond 12CO 2-1 images of 9 protoplanetary disks surrounding
T Tauri stars in the Taurus-Auriga cloud (7 singles and 2 binaries). The images
demonstrate the disks are in Keplerian rotation around their central stars.
Using the least square fit method described in Guilloteau and Dutrey (1998), we
derive the disk properties, in particular its inclination angle and rotation
velocity, hence the dynamical mass. Since the disk mass is usually small, this
is a direct measurement of the stellar mass. Typically, we reach an internal
precision of 10% in the determinations of stellar mass. The over-all accuracy
is limited by the uncertainty in the distance to a specific star. In a distance
independent way, we compare the derived masses with theoretical tracks of
pre-main-sequence evolution. Combined with the mean distance to the Taurus
region (140 pc), for stars with mass close to 1 Msun, our results tend to favor
the tracks with cooler photospheres (higher masses for a given spectral type).
We find that in UZ Tau E the disk and the spectroscopic binary orbit appear to
have different inclinations.Comment: 32 pages, 5 figure
Warm Molecular Layers in Protoplanetary Disks
We have investigated molecular distributions in protoplanetary disks,
adopting a disk model with a temperature gradient in the vertical direction.
The model produces sufficiently high abundances of gaseous CO and HCO+ to
account for line observations of T Tauri stars using a sticking probability of
unity and without assuming any non-thermal desorption. In regions of radius R >
10 AU, with which we are concerned, the temperature increases with increasing
height from the midplane. In a warm intermediate layer, there are significant
amounts of gaseous molecules owing to thermal desorption and efficient
shielding of ultraviolet radiation by the flared disk. The column densities of
HCN, CN, CS, H2CO, HNC and HCO+ obtained from our model are in good agreement
with the observations of DM Tau, but are smaller than those of LkCa15.
Molecular line profiles from our disk models are calculated using a
2-dimensional non-local-thermal-equilibrium (NLTE) molecular-line radiative
transfer code for a direct comparison with observations. Deuterated species are
included in our chemical model. The molecular D/H ratios in the model are in
reasonable agreement with those observed in protoplanetary disks.Comment: 11 pages, Latex (aa.cls), to be published in Astronomy and
Astrophysic
- âŠ