146 research outputs found

    Mechanical and chemical spinodal instabilities in finite quantum systems

    Get PDF
    Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears that instabilities are reduced by finite size effects. The role of surface and volume instabilities is discussed. It is indicated that the important chemical effects associated with mechanical disruption may lead to isospin fractionation.Comment: 4 pages, 4 figure

    Evidence for Spinodal Decomposition in Nuclear Multifragmentation

    Full text link
    Multifragmentation of a ``fused system'' was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher-order charge correlations for fragments show a weak but non ambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a ``fossil'' signal of spinodal instabilities in finite nuclear systems.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Full text link
    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36AMeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32AMeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.Comment: 28 pages including 14 figures; submitted to Nucl. Phys.

    Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon

    Get PDF
    We analyzed the 93Nb^{93}Nb on natMg^{nat}Mg reaction at 30 MeV/nucleon in the aim of disentangling binary sequential decay and multifragmentation decay close to the energy threshold, i.e. ≃3\simeq 3 MeV/nucleon. Using the backtracing technique applied to the statistical models GEMINI and SMM we reconstruct simulated charge, mass and excitation energy distributions and compare them to the experimental ones. We show that data are better described by SMM than by GEMINI in agreement with the fact that multifragmentation is responsible for fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics

    Fragment size correlations in finite systems - application to nuclear multifragmentation

    Full text link
    We present a new method for the calculation of fragment size correlations in a discrete finite system in which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce a combinatorial model, which describes the fragmentation of a finite system as a sequence of independent random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size. The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic probabilities associated with the fragments. Any fragment size correlation function can be built by calculating the ratio between the partition probabilities in the data sample (resulting from an experiment or from a Monte Carlo simulation) and the 'independent emission' model partition probabilities. This technique is applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the nuclear statistical multifragmentaion model ({\sc smm}) are almost independent emission models whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong correlations corresponding to the break-up of the hot dilute nucleus into nearly equal size fragments

    Early Diagnosis, Treatment and Follow-Up of Cystic Echinococcosis in Remote Rural Areas in Patagonia: Impact of Ultrasound Training of Non-Specialists

    Get PDF
    Cystic echinococcosis (CE) is an important and widespread disease that affects sheep, cattle, and humans living in areas where sheep and cattle are raised. CE is highly endemic in rural sections of Rio Negro, Argentina, where our group is based. However, it requires continuous monitoring of both populations with human disease best assessed by means of ultrasound (US) screening. This is challenging in remote rural areas due to the shortage of imaging specialists. To overcome this hurdle, we set up a two-day training program of Focused Assessment with Sonography for Echinococcosis (FASE) on CE for family medicine practitioners with no previous experience in US. After the course, they were equipped with portable US scanners and dispatched to remote rural areas in Rio Negro where they screened patients, located and staged the cysts and decided on the treatment with the help of surgeons and radiologists in local tertiary care centers

    Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study.

    Get PDF
    Background and Aim: Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). Methods: Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. Results: In this GWAS, we found that two SNPs were associated with HCC at Conclusions: SNPs i

    Charge correlations and dynamical instabilities in the multifragment emission process

    Full text link
    A new, sensitive method allows one to search for the enhancement of events with nearly equal-sized fragments as predicted by theoretical calculations based on volume or surface instabilities. Simulations have been performed to investigate the sensitivity of the procedure. Experimentally, charge correlations of intermediate mass fragments emitted from heavy ion reactions at intermediate energies have been studied. No evidence for a preferred breakup into equal-sized fragments has been found.Comment: 12 pages, TeX type, psfig, submitted to Phys. Rev. Lett, also available at http://csa5.lbl.gov/moretto/ps/zcor_pp.p
    • 

    corecore