841 research outputs found

    Photochemical oxidant air pollution : peroxyacetyl nitrate (PAN) as an indicator of photochemical activity

    Get PDF
    Bibliography: leaves 75-84.Photochemical smog is formed by the interaction of sunlight with nitrogen oxides and hydrocarbons. These precursors are principally emitted by anthropogenic sources. As the major component of the photochemical oxidants is ozone, it is used as the indicator of photochemical smog and air quality standards today are therefore based on ozone. Another important photochemical oxidant is peroxyacetyl nitrate (PAN). Many authors believe that PAN is a better indicator of photochemical activity than ozone, because PAN has, unlike ozone, no large natural sources. Thus, the occurrence of high PAN concentrations is unequivocally related to anthropogenic pollution. The objectives of this work are to summarise the current research on the formation of photochemical smog with emphasis on PAN and to investigate the photochemical smog situation in South Africa using PAN as an indicator

    Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells.

    Get PDF
    Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05ā€‰Ī¼m s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages

    Empirical ground-motion prediction equations for Northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake

    Get PDF
    We present ground motion models for northwestern Turkey using the aftershocks of the Mw 7.4, 1999 Kocaeli earthquake. We consider 4047 velocity and acceleration records for each component of motion, from 528 earthquakes recorded by stations belonging to regional networks. The ground motion models obtained provide peak ground velocity, peak ground acceleration, and spectral accelerations for 8 different frequencies between 1 and 10 Hz. The analysis of the error distribution shows that the record-to-record component of variance is the largest contribution to the standard deviation of the calibrated ground- motion models. Furthermore, a clear dependence of inter-event error on stress drop is observed. The empirical ground-motion prediction equations, derived for both the larger horizontal and vertical components, are valid in the local magnitude range from 0.5 to 5.9, and for hypocentral distances up to 190 km. Citation: Bindi, D., S. Parolai, H. Grosser, C. Milkereit, and E. Durukal (2007), Empirical ground-motion prediction equations for northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake

    Source parameters and seismic moment-magnitude scaling for Northwestern Turkey

    Get PDF
    Abstract The source parameters of 523 aftershocks (0.5 ML 5.9) of the 1999 Kocaeli earthquake are determined by performing a two-step spectral fitting procedure. The source spectrum, corrected for both site and propagation effects, is described in terms of a standard x-square model multiplied by an exponential term of frequency. The latter term is introduced to estimate the high-frequency (f 12 Hz) fall-off of the acceleration source spectra by computing the j parameter. The seismic moments obtained range between 1.05 1014 and 2.41 1017 N m, whereas the Brune stress drops are between 0.002 and 40 MPa. The j value varies between 0.00 and 0.08 sec, indicating a decay of the acceleration level at the higher frequency part of the spectrum greater than that assumed by the x 2 model. Both the stress drop and the j parameter show the tendency of increasing with aftershock magnitude. No evidence of self-similarity breakdown is observed between the source radius and M0. Finally, both the seismic moment and the moment magnitude are compared with the local magnitude to derive new momentā€“magnitude relationships for the area

    Isomorphisms of algebras of Colombeau generalized functions

    Full text link
    We show that for smooth manifolds X and Y, any isomorphism between the special algebra of Colombeau generalized functions on X, resp. Y is given by composition with a unique Colombeau generalized function from Y to X. We also identify the multiplicative linear functionals from the special algebra of Colombeau generalized functions on X to the ring of Colombeau generalized numbers. Up to multiplication with an idempotent generalized number, they are given by an evaluation map at a compactly supported generalized point on X.Comment: 10 page

    ML scale in Northwestern Turkey from 1999 Izmit aftershock: updates

    Get PDF
    Abstract We present an update of the local magnitude scale previously calibrated for northwestern Turkey by Baumbach et al. (2003). The path coverage in the westernmost part of the analyzed area has been increased, as well as the number of amplitudes for distance greater than 110 km. Furthermore, a set of recordings from accelerometric stations operated by the Kandilli Observatory and Earthquake Research Institute (KOERI) has been merged with the recordings by the Sapanca-Bolu and German Task Force seismological networks. In all, 4047 recordings from 528 earthquakes recorded by 31 seismometers and 23 accelerometers are considered to calibrate the local magnitude scale over a hypocentral distance range from 10 to 190 km. By analyzing the unit covariance matrix and the resolution matrix, we show how the source-to-station geometries of the seismic and strong-motion networks affect the uncertainties of the computed station corrections, attenuation coefficients, and magnitudes. The assumptions made concerning the reference station correction, and the change in the amplification for the Woodā€“Anderson torsion seismograph from 2800 to 2080 (Uhrhammer and Collins, 1990) introduced an offset of about 0.34 in the magnitudes with respect to Baumbach et al. (2003), with the updated local magnitude scale ranges from 0.50 to 5.91. The distribution of the residuals with distance confirms that the extension of both the magnitude and distance ranges and the improved path coverage have preserved the high quality that characterized the data set analyzed by Baumbach et al. (2003)

    On the Geroch-Traschen class of metrics

    No full text
    We compare two approaches to semi-Riemannian metrics of low regularity. The maximally 'reasonable' distributional setting of Geroch and Traschen is shown to be consistently contained in the more general setting of nonlinear distributional geometry in the sense of Colombea

    ML scale in Northwestern Turkey from 1999 Izmit aftershocks: updates

    Get PDF
    We present an update of the local magnitude scale previously calibrated for Northwestern Turkey by Baumbach et al. (2003). The path coverage in the westernmost part of the analysed area has been increased, as well as the number of amplitudes for distance greater than 110 km. Furthermore, a set of recordings from accelerometric stations operated by the Kandilli Observatory and Earthquake Research Institute (KOERI) has been merged with the recordings by the Sapanca-Bolu and GermanTaskForce seismological networks. In all, 4047 recordings from 528 earthquakes recorded by 31 seismometers and 23 accelerometers are considered to calibrate the local magnitude scale over a hypocentral distance range from 10 to 190 km. By analyzing the unit covariance matrix and the resolution matrix, we show how the source-to-station geometries of the seismic and strong motion networks affect the uncertainties of the computed station corrections, attenuation coefficients, and magnitudes. The assumptions made concerning the reference station correction, and the change in the amplification for the Wood-Anderson torsion seismograph from 2800 to 2080 (Uhrhammer and Collins, 1990) introduced an offset of about 0.34 in the magnitudes with respect to Baumbach et al. (2003), with the updated local magnitude scale ranges from 0.50 to 5.91. The distribution of the residuals with distance confirms that the extension of both the magnitude and distance ranges and the improved path coverage have preserved the high quality that characterized the data set analyzed by Baumbach et al. (2003)

    A topological approach to non-Archimedean Mathematics

    Full text link
    Non-Archimedean mathematics (in particular, nonstandard analysis) allows to construct some useful models to study certain phenomena arising in PDE's; for example, it allows to construct generalized solutions of differential equations and variational problems that have no classical solution. In this paper we introduce certain notions of non-Archimedean mathematics (in particular, of nonstandard analysis) by means of an elementary topological approach; in particular, we construct non-Archimedean extensions of the reals as appropriate topological completions of R\mathbb{R}. Our approach is based on the notion of Ī›\Lambda -limit for real functions, and it is called Ī›\Lambda -theory. It can be seen as a topological generalization of the Ī±\alpha -theory presented in \cite{BDN2003}, and as an alternative topological presentation of the ultrapower construction of nonstandard extensions (in the sense of \cite{keisler}). To motivate the use of Ī›\Lambda -theory for applications we show how to use it to solve a minimization problem of calculus of variations (that does not have classical solutions) by means of a particular family of generalized functions, called ultrafunctions.Comment: 22 page

    Completion of BAX recruitment correlates with mitochondrial fission during apoptosis

    Get PDF
    BAX, a member of the BCL2 gene family, controls the committed step of the intrinsic apoptotic program. Mitochondrial fragmentation is a commonly observed feature of apoptosis, which occurs through the process of mitochondrial fission. BAX has consistently been associated with mitochondrial fission, yet how BAX participates in the process of mitochondrial fragmentation during apoptosis remains to be tested. Time-lapse imaging of BAX recruitment and mitochondrial fragmentation demonstrates that rapid mitochondrial fragmentation during apoptosis occurs after the complete recruitment of BAX to the mitochondrial outer membrane (MOM). The requirement of a fully functioning BAX protein for the fission process was demonstrated further in BAX/BAK-deficient HCT116 cells expressing a P168A mutant of BAX. The mutant performed fusion to restore the mitochondrial network. but was not demonstrably recruited to the MOM after apoptosis induction. Under these conditions, mitochondrial fragmentation was blocked. Additionally, we show that loss of the fission protein, dynamin-like protein 1 (DRP1), does not temporally affect the initiation time or rate of BAX recruitment, but does reduce the final level of BAX recruited to the MOM during the late phase of BAX recruitment. These correlative observations suggest a model where late-stage BAX oligomers play a functional part of the mitochondrial fragmentation machinery in apoptotic cells
    • ā€¦
    corecore