409 research outputs found

    3He-Rich Solar Energetic Particles in Helical Jets on the Sun

    Full text link
    Particle acceleration in stellar flares is ubiquitous in the Universe, however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously enhancing (up to a factor of ten thousand) rare elements like 3He and ultra-heavy nuclei, has been puzzling for almost 50 years. Here we present some of the most intense 3He- and Fe-rich solar energetic particle events ever reported. The events were accompanied by non-relativistic electron events and type III radio bursts. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. The helical jets originated in relatively small, compact active regions, located at the coronal hole boundary. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories STEREO on the backside of the Sun, during the period of increased solar activity in 2014. The helical jets may be a distinct feature of these intense events that is related to the production of high 3He and Fe enrichments.Comment: accepted for publication in The Astrophysical Journa

    Multi-Spacecraft Observations of Recurrent 3He-Rich Solar Energetic Particles

    Full text link
    We study the origin of 3He-rich solar energetic particles (<1 MeV/nucleon) that are observed consecutively on STEREO-B, ACE, and STEREO-A spacecraft when they are separated in heliolongitude by more than 90{\deg}. The 3He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE 3He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 3He-rich events with the same sizeable active region producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous 3He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged active region near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of 1) solar regions with long-lasting conditions for 3He acceleration and 2) solar energetic 3He that is temporary confined/re-accelerated in interplanetary space.Comment: accepted for publication in The Astrophysical Journa

    Ionic liquids removal by sequential photocatalytic and biological oxidation

    Get PDF
    BACKGROUND: The industrial application of ionic liquids (ILs) can induce the generation of wastewater and their release into the aquatic media. ILs can be efficiently removed by advanced oxidation processes (AOPs), which are expensive to implement. An alternative, using solar photocatalysis and biological degradation in combination, was used here to remove 1-hexyl-3-methylimidazolium chloride (HmimCl) and 1-butyl-4-methylpyridinium chloride (BmpyrCl). The chemical pretreatment allowed the ILs to be converted into by-products for easier biodegradation in a sequential batch reactor (SBR). RESULTS: Photocatalytic degradation, using 0.25 g TiO2 L−1 and 600 W m−2 solar radiation for 24 h, allowed a complete ILs removal and a partial mineralization of the organic matter, 28% for Bmpyr+ and 35% for Hmim+. A degradation pathway based on the by-products identified was proposed for each IL. The reaction effluents were submitted to a biological treatment in an SBR, using organic loading rates of 0.18–0.2 kg COD kg−1 VSS d−1 and a biomass concentration of 3.5 g VSS L−1 in 8 h cycles. The combined treatment allowed highly efficient removal of organic matter [total organic carbon (TOC) conversion exceeded 75% for HmimCl and 78% for BmpyrCl]. CONCLUSION: Solar photocatalytic oxidation efficiently removed ILs and produced more biodegradable and less ecotoxic effluents. Biological oxidation increased TOC and chemical oxygen demand (COD) removal to more than 75% for the overall treatment. Combining solar photocatalysis and biological degradation therefore provided an effective system for IL removalThe authors wish to thank the Spanish MINECO and Comunidad de Madrid for the financial support through the projects CTM2016‐76564‐R and BIOTRES‐CM (S2018/EMT‐4344), respectively

    Long-lived energetic particle source regions on the Sun

    Full text link
    Discovered more than 40 years ago, impulsive solar energetic particle (SEP) events are still poorly understood. The enormous abundance enhancement of the rare 3He isotope is the most striking feature of these events, though large enhancements in heavy and ultra-heavy nuclei are also observed. Recurrent 3He-rich SEPs in impulsive events have only been observed for limited time periods, up to a few days which is typically the time that a single stationary spacecraft is magnetically connected to the source active regions on the Sun. With the launch of the two STEREO spacecraft we now have the possibility of longer connection time to solar active regions. We examined the evolution of source regions showing repeated 3He-rich SEP emissions for relatively long time periods. We found that recurrent 3He-rich SEPs in these long-lived sources occur after the emergence of magnetic flux.Comment: accepted for publication in Journal of Physics: Conference Serie

    Comment on "Identifying Molecular Orientation of Individual C<sub>60</sub> on a Si(111)-(7x7) Surface"

    Get PDF
    A Comment on the Letter by J. G. Hou, et al., Phys. Rev. Lett. 83, 3001 (1999)

    Toxicity and inhibition assessment of ionic liquids by activated sludge

    Full text link
    Toxicity of 13 ionic liquids (ILs) corresponding to different families were studied by inhibition respiration assays (15 min) using activated sludge. Toxicity increased as increasing the number of carbons in the alkyl-chain of imidazolium-based ILs, with EC50 values from 4.19 to 0.17 for 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]) and 1-octyl-3-methylimidazolium chloride ([Omim][Cl]), respectively. An increase in toxicity was observed for aromatic-based ILs (pyridinium- and imidazolium-based ILs) due to the hydrophobic character of the head groups in comparison with linear structures as phosphonium and ammonium cations. Among to the anions studied fixing [Emim]+ as cation, [HSO4]- and [NTf2]- presented low EC50 values (0.34 mM and 1.69 mM, respectively) while [Cl]- and [EtSO4]- were considered harmless anions due to the hydrophilic character of chloride and the organic nature of [EtSO4]-. ILs toxicity/inhibition was determined by adding a biodegradable compound and measuring the sludge response after being in contact with the ILs for at least 15 h. The exposure of sewage sludge to ILs for more than 15 min used in short inhibition assays caused more toxic effect on microorganisms, even for [Choline][NTf2], previously defined as practically harmless (EC50 = 2.79 mM). Biodegradability assays confirmed the biodegradable nature of choline cation, related with TOC conversion of 40%, only due to cation consumption. No oxygen consumption or even lysis of microbial cells was observed for Tetrabutylammonium bis(trifluoromethylsulfonyl)imide and for 1-Ethyl-3-methylimidazolium hydrogensulphate due to the presence of anions previously defined as hazardous ([NTf2]- and [HSO4]-), maintaining their recalcitrant character to sewage systemsThe authors greatly appreciate financial support from MINECO , Spain ( CTM2016-76564-R ), Comunidad de Madrid , Spain (BIOTRES-CM, S2018/EMT-4344 ), and UAM-Santander , Spain ( CEAL-AL/2015-08 )

    Observations of the longitudinal spread of solar energetic particle events in solar cycle 24

    Get PDF
    With the twin STEREO spacecraft, significantly separated from L1-based satellites such as ACE, simultaneous multi-point measurements of solar energetic particle (SEP) events can be made for H-Fe ions from a few hundred keV/nuc to over 100 MeV/nuc and for electrons from tens to hundreds of keV. These observations allow studies of the longitudinal characteristics of SEP events to advance beyond statistical analysis of single point measurements. Although there have been few large SEP events thus far in cycle 24, there have been a number of smaller events that have been detected by more than one spacecraft. The composition of these SEP events, as indicated by the H/He and Fe/O abundance ratios, shows a dependence on longitudinal distance from the solar source in some events, at times with ratios varying by an order of magnitude. However, these variations are not organized by either the speed or width of the associated coronal mass ejections

    Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement

    Get PDF
    Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and similar to 1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19-21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded.Peer reviewe
    • 

    corecore