2,611 research outputs found

    Light-cone behavior of the pion Bethe-Salpeter wave function in the ladder model

    Get PDF
    The Bethe-Salpeter wave function χ(q^ν+P^ν, q^ν) for two spin-½ quarks bound by the exchange of a scalar meson is examined in the ladder model. We seek the behavior of χ as the squared momentum, (q+P)^2, on one leg becomes infinite while the squared momentum, q^2, on the other leg remains fixed. This behavior is investigated by making a Wick rotation, expanding χ in partial-wave amplitudes χ^i_J(q^2) of the group O(4), and then looking for the rightmost poles of χ^i_J(q^2) in the complex J plane. Our results verify (in the ladder model) the useful hypothesis that the locations of these poles are independent of q^2 and can thus be computed in the q^2→∞ limit by using conformal invariance

    Large-Q^2 behavior of the pion electromagnetic form factor

    Get PDF
    We study the large-Q^2 behavior of the electromagnetic form factor of the pion, which is viewed as a quark-antiquark bound state in a (nongauge) quantum field theory. When the pion's Bethe-Salpeter wave function is expanded in O(4) partial waves, it is found that the information needed about the partial-wave amplitudes is their scaling behavior at large momentum and the locations of their poles in the complex J plane. This information is determined by using the operator-product expansion, conformal invariance at short distances, and a regularity property that holds at least in the ladder model. The resulting behavior of the form factor is roughly F(Q^2)~(Q^2)^(-1), with corrections due to anomalous dimensions

    Effective Field Theory and Unification in AdS Backgrounds

    Full text link
    This work is an extension of our previous work, hep-th/0204160, which showed how to systematically calculate the high energy evolution of gauge couplings in compact AdS_5 backgrounds. We first directly compute the one-loop effects of massive charged scalar fields on the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk mass scales (which generically are of order the Planck scale) enter only logarithmically in the corrections to the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces our previous calculation, which was based on AdS/CFT duality. We also calculate the effects of scalar fields satisfying non-trivial boundary conditions (relevant for orbifold breaking of bulk symmetries) on the running of gauge couplings.Comment: LaTeX, 27 pages; minor typos fixed, comments adde

    Mapping of strongly correlated steady-state nonequilibrium to an effective equilibrium

    Full text link
    By mapping steady-state nonequilibrium to an effective equilibrium, we formulate nonequilibrium problems within an equilibrium picture where we can apply existing equilibrium many-body techniques to steady-state electron transport problems. We study the analytic properties of many-body scattering states, reduce the boundary condition operator in a simple form and prove that this mapping is equivalent to the correct linear-response theory. In an example of infinite-U Anderson impurity model, we approximately solve for the scattering state creation operators, based on which we derive the bias operator Y to construct the nonequilibrium ensemble in the form of the Boltzmann factor exp(-beta(H-Y)). The resulting Hamiltonian is solved by the non-crossing approximation. We obtain the Kondo anomaly conductance at zero bias, inelastic transport via the charge excitation on the quantum dot and significant inelastic current background over a wide range of bias. Finally, we propose a self-consistent algorithm of mapping general steady-state nonequilibrium.Comment: 15 pages, 9 figure

    Renormalization of One-Pion Exchange and Power Counting

    Get PDF
    The renormalization of the chiral nuclear interactions is studied. In leading order, the cutoff dependence is related to the singular tensor interaction of the one-pion exchange potential. In S waves and in higher partial waves where the tensor force is repulsive this cutoff dependence can be absorbed by counterterms expected at that order. In the other partial waves additional contact interactions are necessary. The implications of this finding for the effective-field-theory program in nuclear physics are discussed.Comment: 19 pages, 18 figure

    Role of the N∗N^*(1535) in the J/ψ→pˉηpJ/\psi\to \bar{p}\eta p and J/ψ→pˉK+ΛJ/\psi\to \bar{p}K^+\Lambda reactions

    Full text link
    We study the J/ψ→pˉηpJ/\psi\to \bar{p}\eta p and J/ψ→pˉK+ΛJ/\psi\to \bar{p}K^+\Lambda reactions with a unitary chiral approach. We find that the unitary chiral approach, which generates the N∗(1535)N^*(1535) dynamically, can describe the data reasonably well, particularly the ratio of the integrated cross sections. This study provides further support for the unitary chiral description of the N∗(1535)N^*(1535). We also discuss some subtle differences between the coupling constants determined from the unitary chiral approach and those determined from phenomenological studies.Comment: version to appear in PRC; certain features of the approach clarifie

    Scalar-Tensor Gravity in Two 3-brane System

    Get PDF
    We derive the low-energy effective action of four-dimensional gravity in the Randall-Sundrum scenario in which two 3-branes of opposite tension reside in a five-dimensional spacetime. The dimensional reduction with the Ansatz for the radion field by Charmousis et al., which solves five-dimensional linearized field equations, results in a class of scalar-tensor gravity theories. In the limit of vanishing radion fluctuations, the effective action reduces to the Brans-Dicke gravity in accord with the results of Garriga and Tanaka: Brans-Dicke gravity with the corresponding Brans-Dicke parameter 0<ω<∞0< \omega < \infty (for positive tension brane) and −3/2<ω<0-3/2< \omega <0 (for negative tension brane). In general the gravity induced a brane belongs to a class of scalar-tensor gravity with the Brans-Dicke parameter which is a function of the interval and the radion. In particular, gravity on a positive tension brane contains an attractor mechanism toward the Einstein gravity.Comment: 8 pages, discussion expanded, references adde
    • …
    corecore