187 research outputs found

    Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly.

    Get PDF
    The strongest risk factor for developing Alzheimer's Disease (AD) is age. Here, we study the relationship between ageing and AD using a systems biology approach that employs a Drosophila (fruitfly) model of AD in which the flies overexpress the human Aβ42 peptide. We identified 712 genes that are differentially expressed between control and Aβ-expressing flies. We further divided these genes according to how they change over the animal's lifetime and discovered that the AD-related gene expression signature is age-independent. We have identified a number of differentially expressed pathways that are likely to play an important role in the disease, including oxidative stress and innate immunity. In particular, we uncovered two new modifiers of the Aβ phenotype, namely Sod3 and PGRP-SC1b

    A microbial supply chain for production of the anti-cancer drug vinblastine

    Get PDF
    International audienceAbstract Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine 1 . As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus , which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale 2,3 . Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues

    Cognitive disorders in patients with chronic kidney disease: specificities of clinical assessment

    Get PDF
    Neurocognitive disorders are frequent among chronic kidney disease (CKD) patients. Identifying and characterizing cognitive impairment (CI) can help to assess the ability of adherence to CKD risk reduction strategy, identify potentially reversible causes of cognitive decline, modify pharmacotherapy, educate the patient and caregiver and provide appropriate patient and caregiver support. Numerous factors are associated with the development and progression of CI in CKD patients and various conditions can influence the results of cognitive assessment in these patients. Here we review clinical warning signs that should lead to cognitive screening; conditions frequent in CKD at risk to interfere with cognitive testing or performance, including specificities of cognitive assessment in dialysis patients or after kidney transplantation; and available tests for screening and observed cognitive patterns in CKD patients

    Macroscopic findings in collagenous colitis:a multi-center, retrospective, observational cohort study

    Get PDF
    Background Collagenous colitis (CC) is by definition a histological diagnosis. However, colonoscopy often reveals characteristic endoscopic findings. The aim of this study was to evaluate the frequency and type of endoscopic findings in patients diagnosed with CC in 4 participating centers. Methods This was a retrospective study; the databases of 2 university hospitals in Edinburgh (Scotland) and Malmö (Sweden), and 2 district general hospitals in Tomelloso (Spain) and Gateshead (England) were interrogated for patients diagnosed with CC between May 2008 and August 2013. Endoscopy reports and images were retrieved and reviewed; data on lesions, sedation, bowel preparation and endoscopist experience were abstracted. Categorical data are reported as mean±SD. Fischer’s exact, chi-square and t (unpaired) tests were used to compare datasets. A two-tailed P-value of <0.05 was considered statistically significant. Results 607 patients (149 male, mean age 66.9±12.25 years) were diagnosed with CC. A total of 108/607 (17.8%) patients had one or more suggestive endoscopy findings: i.e., mucosal erythema/edema, 91/607 (15%); linear colonic mucosal defects, 12/607 (2%); or mucosal scarring, 5/607 (0.82%). For colonic mucosa erythema, there was no difference in the odds of finding erythema with the use of different bowel preparation methods (P=0.997). For colonic mucosal defects there was some evidence (P=0.005) that patients colonoscoped by experienced endoscopists had 87% less odds of developing such defects. Moreover, there was evidence that analgesia reduced the odds of developing mucosal defects by 84%. Conclusion A significant minority of patients with CC have endoscopic findings in colonoscopy. The description of such findings appears to be related to the endoscopist’s experience

    Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila

    Get PDF
    Insulin-like peptides (ILPs) regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs) in the Drosophila brain that express three ILPs (DILP2, 3 and 5) have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABAB receptor (GBR), but not the ionotropic GABAA receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K+ channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain

    A Combination of Genomic Approaches Reveals the Role of FOXO1a in Regulating an Oxidative Stress Response Pathway

    Get PDF
    Background: While many of the phenotypic differences between human and chimpanzee may result from changes in gene regulation, only a handful of functionally important regulatory differences are currently known. As a first step towards identifying transcriptional pathways that have been remodeled in the human lineage, we focused on a transcription factor, FOXO1a, which we had previously found to be up-regulated in the human liver compared to that of three other primate species. We concentrated on this gene because of its known role in the regulation of metabolism and in longevity. Methodology: Using a combination of expression profiling following siRNA knockdown and chromatin immunoprecipitation in a human liver cell line, we identified eight novel direct transcriptional targets of FOXO1a. This set includes the gene for thioredoxin-interacting protein (TXNIP), the expression of which is directly repressed by FOXO1a. The thioredoxininteracting protein is known to inhibit the reducing activity of thioredoxin (TRX), thereby hindering the cellular response to oxidative stress and affecting life span. Conclusions: Our results provide an explanation for the repeated observations that differences in the regulation of FOXO transcription factors affect longevity. Moreover, we found that TXNIP is down-regulated in human compared to chimpanzee, consistent with the up-regulation of its direct repressor FOXO1a in humans, and with differences in longevity between th

    An RGS-Containing Sorting Nexin Controls Drosophila Lifespan

    Get PDF
    The pursuit of eternal youth has existed for centuries and recent data indicate that fat-storing tissues control lifespan. In a D. melanogaster fat body insertional mutagenic enhancer trap screen designed to isolate genes that control longevity, we identified a regulator of G protein signaling (RGS) domain containing sorting nexin, termed snazarus (sorting nexin lazarus, snz). Flies with insertions into the 5′ UTR of snz live up to twice as long as controls. Transgenic expression of UAS-Snz from the snz Gal4 enhancer trap insertion, active in fat metabolic tissues, rescued lifespan extension. Further, the lifespan extension of snz mutants was independent of endosymbiont, e.g., Wolbachia, effects. Notably, old snz mutant flies remain active and fertile indicating that snz mutants have prolonged youthfulness, a goal of aging research. Since mammals have snz-related genes, it is possible that the functions of the snz family may be conserved to humans
    • …
    corecore