563 research outputs found

    Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain

    Get PDF
    Increasing evidence indicates that tissue transglutaminase (tTG) plays a role in the assembly and remodeling of extracellular matrices and promotes cell adhesion. Using an inducible system we have previously shown that tTG associates with the extracellular matrix deposited by stably transfected 3T3 fibroblasts overexpressing the enzyme. We now show by confocal microscopy that tTG colocalizes with pericellular fibronectin in these cells, and by immunogold electron microscopy that the two proteins are found in clusters at the cell surface. Expression vectors encoding the full-length tTG or a N-terminal truncated tTG lacking the proposed fibronectin-binding site (fused to the bacterial reporter enzyme β-galactosidase) were generated to characterize the role of fibronectin in sequestration of tTG in the pericellular matrix. Enzyme-linked immunosorbent assay style procedures using extracts of transiently transfected COS-7 cells and immobilized fibronectin showed that the truncation abolished fibronectin binding. Similarly, the association of tTG with the pericellular matrix of cells in suspension or with the extracellular matrix deposited by cell monolayers was prevented by the truncation. These results demonstrate that tTG binds to the pericellular fibronectin coat of cells via its N-terminal β-sandwich domain and that this interaction is crucial for cell surface association of tTG

    Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles

    Full text link
    Low-frequency Raman scattering experiments have been performed on thin films consisting of nickel-silver composite nanoparticles embedded in alumina matrix. It is observed that the Raman scattering by the quadrupolar modes, strongly enhanced when the light excitation is resonant with the surface dipolar excitation, is mainly governed by the silver electron contribution to the plasmon excitation. The Raman results are in agreement with a core-shell structure of the nanoparticles, the silver shell being loosely bonded to the nickel core.Comment: 3 figures. To be published in Phys. Rev.

    Making Password Authenticated Key Exchange Suitable For Resource-Constrained Industrial Control Devices

    Get PDF
    Connectivity becomes increasingly important also for small embedded systems such as typically found in industrial control installations. More and more use-cases require secure remote user access increasingly incorporating handheld based human machine interfaces, using wireless links such as Bluetooth. Correspondingly secure operator authentication becomes of utmost importance. Unfortunately, often passwords with all their well-known pitfalls remain the only practical mechanism. We present an assessment of the security requirements for the industrial setting, illustrating that offline attacks on passwords-based authentication protocols should be considered a significant threat. Correspondingly use of a Password Authenticated Key Exchange protocol becomes desirable. We review the signif-icant challenges faced for implementations on resource-constrained devices. We explore the design space and shown how we succeeded in tailoring a partic-ular variant of the Password Authenticated Connection Establishment (PACE) protocol, such that acceptable user interface responsiveness was reached even for the constrained setting of an ARM Cortex-M0+ based Bluetooth low-energy transceiver running from a power budget of 1.5 mW without notable energy buffers for covering power peak transients

    Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field

    Full text link
    The long-time asymptotics is analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as time goes to plus or minus infinity to the set of all ``nonlinear eigenfunctions'' of the form \psi(x)e\sp{-i\omega t}. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap [-m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single harmonic in [-m,m]. The research is inspired by Bohr's postulate on quantum transitions and Schroedinger's identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled U(1)-invariant Maxwell-Schroedinger and Maxwell-Dirac equations.Comment: 29 pages, 1 figur

    Dot

    Get PDF
    En Kabylie (d'après G. Laoust-Chantreaux) Le calcul qui permet de fixer le montant de la dot, en Kabylie, obéit à un véritable rituel bien décrit par G. Laoust-Chantereaux pour la période qui précéda la deuxième Guerre mondiale. Bien qu’il ait été déjà arrêté entre les deux familles, le montant doit être débattu devant témoins après un repas offert chez le père de la jeune fille mais aux frais des parents du jeune homme. Le déroulement de la cérémonie est invariable : le père de la jeune fill..

    The surface science of quasicrystals

    Get PDF
    The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development. (Some figures in this article are in colour only in the electronic version

    Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles

    Full text link
    Origin of shifts in the surface plasmon resonance (SPR) frequency for noble metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of electron from the Fermi surface is considered as the origin of red shift. On the other hand, both screening of electrons of the noble metal in porous media and quantum effect of screen surface electron are considered for the observed blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec
    • …
    corecore