1,544 research outputs found

    A Modeling Approach to Determine the Impacts of Land Use and Climate Change Scenarios on the Water Flux of the Upper Mara River

    Get PDF
    With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results

    Hydrological Foundation as a Basis for a Holistic Environmental Flow Assessment of Tropical Highland Rivers in Ethiopia

    Get PDF
    The sustainable development of water resources includes retaining some amount of the natural flow regime in water bodies to protect and maintain aquatic ecosystem health and the human livelihoods and wellbeing dependent upon them. Although assessment of environmental flows is now occurring globally, limited studies have been carried out in the Ethiopian highlands, especially studies to understand flow-ecological response relationships. This paper establishes a hydrological foundation of Gumara River from an ecological perspective. The data analysis followed three steps: first, determination of the current flow regime flow indices and ecologically relevant flow regime; second, naturalization of the current flow regime looking at how flow regime is changing; and, finally, an initial exploration of flow linkages with ecological processes. Flow data of Gumara River from 1973 to 2018 are used for the analysis. Monthly low flow occurred from December to June; the lowest being in March, with a median flow of 4.0 m(3) s(-1). Monthly high flow occurred from July to November; the highest being in August, with a median flow of 236 m(3) s(-1). 1-Day low flows decreased from 1.55 m(3) s(-1) in 1973 to 0.16 m(3) s(-1) in 2018, and 90-Day (seasonal) low flow decreased from 4.9 m(3) s(-1) in 1973 to 2.04 m(3) s(-1) in 2018. The Mann-Kendall trend test indicated that the decrease in low flow was significant for both durations at alpha = 0.05. A similar trend is indicated for both durations of high flow. The decrease in both low flows and high flows is attributed to the expansion of pump irrigation by 29 km(2) and expansion of plantations, which resulted in an increase of NDVI from 0.25 in 2000 to 0.29 in 2019. In addition, an analysis of environmental flow components revealed that only four "large floods" appeared in the last 46 years; no "large flood" occurred after 1988. Lacking "large floods" which inundate floodplain wetlands has resulted in early disconnection of floodplain wetlands from the river and the lake; which has impacts on breeding and nursery habitat shrinkage for migratory fish species in Lake Tana. On the other hand, the extreme decrease in "low flow" components has impacts on pin smaller pools. These results serve as the hydrological foundation for continued studies in the Gumara catchment, with the eventual goal of quantifying environmental flow requirements.redators, reducing their mobility and ability to access prey concentrate

    Hadronic Density of States from String Theory

    Full text link
    Exactly soluble string theories describing a particular hadronic sector of certain confining gauge theories have been obtained recently as Penrose-Gueven limits of the dual supergravity backgrounds. The effect of taking the Penrose-Gueven limit on the gravity side translates, in the gauge theory side, into an effective truncation to hadrons of large U(1) charge (annulons). We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Gueven limit of the Maldacena-Nunez embedding of N=1 SYM into string theory. It is established that the theory exhibits a Hagedorn density of states. Motivated by this exact calculation we propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.Comment: 15 page

    Vacuum Energy Cancellation in a Non-supersymmetric String

    Get PDF
    We present a nonsupersymmetric orbifold of type II string theory and show that it has vanishing cosmological constant at the one and two loop level. We argue heuristically that the cancellation persists at higher loops.Comment: 31 pages harvmac big, 6 figures. New version includes the 2-loop analysis of hep-th/9810129 and elimination of one of the two heuristic arguments for higher loop cancellatio

    Duality in Non-Trivially Compactified Heterotic Strings

    Full text link
    We study the implications of duality symmetry on the analyticity properties of the partition function as it depends upon the compactification length. In order to obtain non-trivial compactifications, we give a physical prescription to get the Helmholtz free energy for any heterotic string supersymmetric or not. After proving that the free energy is always invariant under the duality transformation R→α′/(4R)R\rightarrow \alpha^{'}/(4R) and getting the zero temperature theory whose partition function corresponds to the Helmholtz potential, we show that the self-dual point R0=α′/2R_{0}=\sqrt{\alpha^{'}}/2 is a generic singularity as the Hagedorn one. The main difference between these two critical compactification radii is that the term producing the singularity at the self-dual point is finite for any R≠R0R \neq R_{0}. We see that this behavior at R0R_{0} actually implies a loss of degrees of freedom below that point.Comment: (Preprint No. FTUAM-92/12) 17 page

    Yang-Mills Theory as a Deformation of Topological Field Theory, Dimensional Reduction and Quark Confinement

    Get PDF
    We propose a reformulation of Yang-Mills theory as a perturbative deformation of a novel topological (quantum) field theory. We prove that this reformulation of the four-dimensional QCD leads to quark confinement in the sense of area law of the Wilson loop. First, Yang-Mills theory with a non-Abelian gauge group G is reformulated as a deformation of a novel topological field theory. Next, a special class of topological field theories is defined by both BRST and anti-BRST exact action corresponding to the maximal Abelian gauge leaving the maximal torus group H of G invariant. Then we find the topological field theory (D>2D>2) has a hidden supersymmetry for a choice of maximal Abelian gauge. As a result, the D-dimensional topological field theory is equivalent to the (D-2)-dimensional coset G/H non-linear sigma model in the sense of Parisi and Sourlas dimensional reduction. After maximal Abelian gauge fixing, the topological property of magnetic monopole and anti-monopole of four-dimensional Yang-Mills theory is translated into that of instanton and anti-instanton in two-dimensional equivalent model. It is shown that the linear static potential in four-dimensions follows from the instanton--anti-instanton gas in the equivalent two-dimensional non-linear sigma model obtained from the four-dimensional topological field theory by dimensional reduction, while the remaining Coulomb potential comes from the perturbative part in four-dimensional Yang-Mills theory. The dimensional reduction opens a path for applying various exact methods developed in two-dimensional quantum field theory to study the non-perturbative problem in low-energy physics of four-dimensional quantum field theories.Comment: 58 pages, Latex, no figures, version accepted for publication in Phys. Rev. D (additions of Discussion, references and minor changes

    SeaWiFS technical report series. Volume 22: Prelaunch acceptance report for the SeaWFS radiometer

    Get PDF
    The final acceptance, or rejection, of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel (composed of the authors of this technical memorandum) examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance of this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit

    SeaWiFS Technical Report Series. Volume 22: Prelaunch Acceptance Report for the SeaWiFS Radiometer

    Get PDF
    The final acceptance, or rejection, of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance by this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit

    SeaWiFS technical report series. Volume 23: SeaWiFS prelaunch radiometric calibration and spectral characterization

    Get PDF
    Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS

    Thermodynamic behavior of IIA string theory on a pp-wave

    Full text link
    We obtain the thermal one loop free energy and the Hagedorn temperature of IIA superstring theory on the pp-wave geometry which comes from the circle compactification of the maximally supersymmetric eleven dimensional one. We use both operator and path integral methods and find the complete agreement between them in the free energy expression. In particular, the free energy in the μ→∞\mu \to \infty limit is shown to be identical with that of IIB string theory on maximally supersymmetric pp-wave, which indicates the universal thermal behavior of strings in the large class of pp-wave backgrounds. We show that the zero point energy and the modular properties of the free energy are naturally incorporated into the path integral formalism.Comment: 25 pages, Latex, JHEP style, v4: revised for clarity without change in main contents, version to appear in JHE
    • …
    corecore