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ABSTRACT

Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration

equations have been developed that allow conversion of the counts from the radiometer into Earth-exiting radi-
ances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS

uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity mea-
surements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear

gains is central to the calibration equations. Several other factors within these equations are also included.

Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the

ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside
of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from

the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is

a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses

are converted from those for the laboratory source into those for a source with the spectral shape of solar flux.

The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-exiting radiance

from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4%,
depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both

for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support
of SeaWiFS.

1. INTRODUCTION

In addition to its role as an ocean color experiment, the

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) serves
as a satellite procurement experiment for the National

Aeronautics and Space Administration (NASA). In a stan-
dard procurement, NASA provides the instrument builder

with a detailed specification for the design of the sensor.

In this procedure, NASA also maintains detailed control

over the construction of that instrument. The builder pro-
vides NASA with the satellite sensor on a cost-plus basis.

NASA eventually obtains the specified instrument, but at

a price. The price includes a substantial supervisory over-
head by the agency, a substantial documentation overhead

on the builder showing compliance with the detailed NASA
specification, and often a substantial increase in the cost

of the instrument as the specifications from NASA change

during the construction of the instrument. This process
is the price that must be paid for the construction of new

satellite sensors which expand the definition of state of the
art.

SeaWiFS does not break radically new ground in sen-

sor design. The necessary improvements in the SeaWiFS

measurements, over those of its predecessor--the Coastal

Zone Color Scanner (CZCS)--are straightforward techni-

cally (Barnes and Holmes 1993 and Hooker et al. 1993).
From NASA's point of view, SeaWiFS is considered an

improved replacement instrument for its predecessor. Such

an instrument does not require the financial and supervi-
sory overheads of a standard NASA procurement. These
overhead items have been replaced with a well defined and

well scrubbed set of performance specifications.

For the SeaWiFS Project, NASA is procuring data,
not a specific instrument. NASA has entered a contrac-

tual agreement with Orbital Sciences Corporation (OSC)

to obtain, at a fixed price, an ocean color data set. Sea-

WiFS is a data buy. OSC has entered into an agreement

with the Hughes/Santa Barbara Research Center (SBRC)

to build, as a subcontractor, the satellite sensor required

to provide this data set. In this arrangement, SBRC has

the freedom to design an instrument to meet the predeter-

mined set of performance specifications. The actual design
of the instrument has been left to SBRC.

Based on SBRC's design of the SeaWiFS radiometer,
it has been possible to develop a set of radiometric cali-

bration equations for the sensor. These equations, and the

philosophy behind them, are presented below. The equa-

tions are presented in a form that allow for their update
as relative changes in the instrument's radiometric sensi-

tivity are detected during on-orbit operation. In addition,
the set of prelaunch radiometric calibration coefficients is

presented.

This report also presents the spectral response of the
eight SeaWiFS bands, using laboratory measurements from

SBRC. On orbit, there is no method for determining spec-

tral shifts in the instrument's response. The primary labo-

ratory method of determining the spectral response of the

SeaWiFS bands has been accomplished through measure-

ments of individual parts in the instrument's optical train.

In addition, system level response measurements have been

made using a monochromatic light source. The system

level measurements are used as a confirmation to the piece

part measurements, since the system level apparatus does
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nothavethesensitivityto measuretheout-of-bandrespon-
sesat wavelengthswheretheresponseisextremelysmall.
Thepiecepart resultsarepresentedhere.

2. INSTRUMENT DESCRIPTION

SeaStar is being built by OSC and is currently sched-

uled to be placed into orbit by an OSC stretch-Pegasus
booster in 1995. The SeaWiFS radiometer is shown moun-

ted on the SeaStar satellite in Fig. 1. The instrument is

located on the top spacecraft shelf between the three an-
tennas. SeaWiFS is the only research instrument that will

be carried by SeaStar. SeaWiFS consists of a scanner and
an electronics module. The scanner, which contains the

optics, detectors, preamplifiers, and scan mechanisms, is
located on the nadir face of the instrument shelf. The elec-

tronics module, which contains signal conditioning, com-
mand and telemetry, and power supply components, is lo-

cated directly opposite the scanner on the inside surface of
the instrument shelf. The total weight of the instrument

is about 110 pounds.
SeaWiFS is designed to measure Earth-exiting radi-

ances. The sensor's instantaneous field-of-view (IFOV) is

1.6 by 1.6 mrad per pixel, with one scan covering +58.3 °
about nadir. The SeaWiFS scanner can be tilted to +20,

0, or -20 ° relative to nadir to minimize the number of
glint contaminated measurements in the data set. Each

pixel value is digitized to 10 bit accuracy, with a typical
scene producing about 600 counts with about one count of
noise.

The SeaWiFS scanner is illustrated in Fig. 2. Light

first strikes the primary mirror, an off-axis parabola, and
then is reflected from a second surface polarization scram-

bler and the half angle mirror before reaching the field

stop. The half angle mirror removes the rotation of the
image from the scan of the telescope. The mirror rotates
at exactly half the rate of the telescope and polarization

scrambler, and it uses alternating mirror sides on succes-
sive telescope scans. The field stop is actually 50% larger
than the detectors, and it restricts stray light through the

system. After the field stop, the light is collimated by

another off-axis paraboloid and directed to the aft optics
assembly. Dichroic beam splitters divert the light into four
focal plane assemblies, each containing two spectral bands

delineated by narrowband filters in close proximity to the
detector. The optical paths in the aft optics assembly are

shown in Fig. 3.
Attention in the design of SeaWiFS has been given to

minimizing the sensitivity of the instrument to polarized
light. This consideration is the principal reason for split-

ting the telescope into two sections, with each rotating
at a different speed. This design minimizes the incidence
angle of light on the mirrors. There are other possible in-
strument designs which reduce this mechanical complexity,

but they require large incidence angles on one or more mir-

rors, producing unacceptable polarization variations, par-
ticularly in the blue. In addition, SeaWiFS uses a polar-

ization scrambler (Fig. 2 and 3) to further reduce these

variations. The scrambler eliminates the need for individ-

ual compensators to remove residual polarization at each

focal plane assembly. The scrambler consists of two op-

tical wedges that act as a variable wave plate to convert

incident polarized light into several cycles of circular, hori-
zontal, and vertical polarized light across the instrument's

aperture. The sensitivity of the output of SeaWiFS to po-
larized light is measured in the laboratory, using a source

producing plane polarized light. The rotation of the po-

larized light through 360 ° produced changes of less than

0.5%in the eight SeaWiFS bands.
Two instrument bands, which have four detectors each,

form a focal plane. The four detectors in each group are

added using a time delay and integration (TDI) technique

to improve signal-to-noise ratios (SNRs). The signal from
each detector is amplified, processed through a selectable

gain stage, and digitized with a 12 bit analog-to-digital

converter (ADC). The four digital words from a band are

then: delayed, summed to obtain the TDI advantage, trun-
cated to 10 bits, and transmitted to the SeaStar satellite

bus through the electronics module. A solar calibrator is

mounted on the instrument so that, if desired, the optical

system views a solar illuminated diffuser when passing over

the South Pole. The entire spacecraft can be rotated to al-
low the instrument to view the nearly full moon, which is

considered to be a stable calibration source for the purpose

of monitoring the long-term repeatability of the SeaWiFS

measurements (Woodward et al. 1993).

3. BILINEAR GAINS

Tests of the instrument at SBRC in the spring of 1993

revealed that SeaWiFS measurements would be contami-

nated by stray light from clouds in adjacent pixels on orbit.

These tests also showed the stray light contamination to

be roughly proportional to the brightness of the adjacent

cloud. As part of the set of instrument improvements,

SBRC has changed the sensor's electronics to allow on-
orbit measurements of the radiances from clouds. These

changes also maintain the sensitivity of the SeaWiFS mea-
surements of the ocean as specified in the initial require-
ments for the instrument.

The new electronic configuration uses the four detec-
tor circuits in each SeaWiFS band to create bands with

bi-linear gains. The response for SeaWiFS band 1,412 nm,

is shown in Fig. 4. The channel has a high sensitivity,
i.e., considerably less than 1 mW per count, over three-

quarters of the band's dynamic range. Above this point,

the channel's sensitivity is reduced, allowing the measure-

ment of cloud radiances up to 60 mW (Fig. 4, top). For

ocean measurements, the band will have the same response
as before, except over a reduced number of counts (Fig. 4,

bottom).
The operation of the four channels in a SeaWiFS band

can be illustrated using the radiance levels for band 1.

The values for this band are given in Tables 1-4. The
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Fig. 1. The SeaStar spacecraft. The SeaWiFS instrument is mounted on the top payload shelf between the
three antennas.
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The scanner mounts to the payload shelf using the four mountingFig. 2. The SeaWiFS scanner assembly.

points at the top of the figure.
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Fig. 3. The SeaWiFS aft optics assembly.

values are given for Science Gain 1, the standard gain for
SeaWiFS ocean measurements. The values are given using

the output from all four channels for this band. This is the
standard detector configuration for the instrument. The

input radiances, counts, and zero offsets (Table 1) come
from measurements of the radiometric calibration of the
instrument. With the zero offsets removed, the net counts,

along with the sphere radiance, are used to calculate the

sensitivity for each channel (Table 1). Channel 1, with low

sensitivity, allows measurement of the high radiances from
clouds. Channels 2, 3, and 4, with high sensitivities, allow
measurements of the low radiances from oceans. These

sensitivities, in mW of radiance per count, are fundamental
to the calibration of SeaWiFS. They allow the conversion
of the counts from the instrument into radiances at the

instrument's optical input.
Tables 1-4 describe, in stepwise fashion, the determi-

nation of knee and endpoint locations for the bilinear gains

for SeaWiFS band 1. The calculations are made for Sci-

ence Gain 1. Details of the stepwise calculation algorithm

are given with the tables.
The SeaWiFS channels are digitized at 10 bits. The

output from each channel range from 0-1,023 counts. When
the zero offsets are removed, the saturation counts for the

four channels in SeaWiFS band 1 range from 1,000-1,005

counts (Table 2). From these saturation counts and the
sensitivities for the channels, it is possible to calculate the
saturation radiances for each of the channels. These values

are given in Table 2. For radiances greater than the sat-
uration radiances, the output from the SeaWiFS channels
will remain at their saturation count levels.

The saturation radiances in Table 2 give the three knee

radiances and the maximum radiance for band 1 (gain 1).
The minimum radiance is zero for zero counts, i.e., for zero

counts after the removal of the offset. Using the saturation
radiance levels and the sensitivities, it is possible to calcu-
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Table1. In thefollowingtables(1-4),theprocessof calculating the knee and endpoint locations for the bilinear
gains of SeaWiFS band 1 is shown. These calculations are made for Science Gain 1. Table 1 gives the input
values and calculated sensitivities for the four channels of band 1. The sensitivities are calculated from the

sphere radiances and the net counts.

Channel Radiance

[mW]
9.246

9.246

9.246

9.246

Meas urement

[counts]

175

871

859

871

Offset

[counts]

21

23
18

21

Net Counts

154

848

841
850

Sensitivity

[mW/count]

0.060039

0.010903

0.010994

0.010878

Table 2. Saturation counts and saturation radiances for the four channels. The saturation radiances are
alculated from the saturation counts and the sensitivities. The offset has been removed from both the zero and

he saturation counts.

Channel

1

2

3

4

Zero

0

0

0

0

Saturation Counts

1,002
1,000

1,005

1,002

Saturation Radiance

[mW]
60.159

10.903

11.049
10.899

Table 3. Calculated instrument output at the saturation radiances for the four channels. The counts at the
mees are calculated from the knee radiances and the sensitivities. The counts for each channel cannot exceed

;he saturation counts.

Counts--Channel 1
Counts--Channel 2

Counts--Channel 3

Counts--Channel 4

Sum of Counts

[Sum of Counts]/4
Radiance

Zero

0.00
0.00

0.00

0.00

0.00

0.00

0.00

Knee 1

181.54

999.64

991.39

1,002.00

3,174.57

793.64
10.90

Knee 2

181.60

1,000.00
991.75

1,002.00

3,175.35

793.84

10.90

Knee 3

184.03

1,000.00

1,005.00
1,002.00

3,191.03

797. 76

11.05

Saturation

1,002.00
1,000.00

1,005.00

1,002.00

4,009.00

1,002.25
60.16

Table 4. Knees and endpoint locations for the bilinear gains. These are the values in the last two rows of

Table 3.

Location Radiance [m W] Counts

Zero

Knee 1

Knee 2
Knee 3

Saturation

0.000

10.899

10.903

11.049

60.159

0.00

793.64

793.84

797.76

1,002.25

late the number of counts from each channel at the three
knees and the two endpoints of the bilinear gains (Table 3).

The counts from the four channels are summed and

divided by four in Table 3. This duplicates the process
within SeaWiFS. On orbit, the output from the channels,

as selected by the instrument's electronics based on com-
mands from the ground, will be summed. The result will
be sent from SeaWiFS to the SeaStar spacecraft. This out-

put will be sent minus its two least significant bits, which
means that the output will be sent from the instrument to

the spacecraft after division by four.

The radiances and counts at the three knees and the

two endpoints are given in Table 4. The counts at zero
radiance are zero. For these calculations, and for on-orbit

operations, the zero offsets are removed at the start of
the calculations. This initial step opens up a direct re-

lationship between counts and radiances for ocean mea-
surements. Below the first knee in the radiance region for

ocean measurements, Table 3 gives the information for the
calculation of the sensitivity of band 1: (10.899/793.64),

or 0.013773 mW per count. Above the third knee in the

radiance region for cloud measurements, the sensitivity
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is (60.159-11.049)/(1002.25-797.76),or 0.240158mW per
count.Theoceanportionofthebilineargainis17.5times
moresensitivethan the cloudportion. This difference
in sensitivitiesbecomesgreaterin sequencefor bands2
through8.

Theeffectofslightlydifferentsensitivitiesin thethree
highsensitivitychannelsis shownin Fig.5. In thiscase,
thekneeisnotsharp,buthastwointernalsegments,rather
thanjust onesegmentin andonesegmentout. This in-
creasestheregionof uncertaintyin thetransitionbetween
theoceanandcloudsensitivityregimes.

TherevisedelectronicconfigurationthatgivesSeaWiFS
the ability to detectclouds,alsodefinesthemethodin
whichthekneesfor thebilineargainsarecalculated(see
Tables1-4). If thedetectorconfigurationfor a bandis
changed,thenthekneesforthebilineargainsmustbere-
calculated.If thesensitivitiesofthehighsensitivitychan-
nelsfor abandarechanged,i.e.,bychangingthegainfor
theband,thenthekneesforthebilineargainsmustbere-
calculated.However,thesensitivityofthecloudchannel,
in thiscasechannel1 of band1, remainsfixed. It does
notchangewithgainchangesin theinstrument.Onlythe
sensitivitiesofthethreehighsensitivitychannelsforeach
bandcanbechanged.Forthisreason,theupperendpoint
inthebilineargainsdoesnotchangewhentheband'sgains
arechanged.

4. MIRROR SIDES

4.1 Scan-to-Scan Differences

For the purpose of instrument calibration, SeaWiFS

is to be considered as two separate, but nearly identical

instruments: mirror side 1 and mirror side 2. This separa-

tion is necessary since the two sides of the half angle mir-
ror (Fig. 2) have slightly different reflecting properties and

slightly different alignments in the sensor's optical path.
Mirror side differences translate into scan to scan differ-

ences since the two mirror sides are used alternately, i.e.,
from scan to scan in the SeaWiFS measurements. For this

report the authors have not considered the geometric scan-

to-scan differences generated by the small differences in the
two mirror sides. The concern here is the radiometric ef-

fects of the differences. As shown below, these differences

are a few tenths of a percent.

For SeaWiFS, there will be two sets of radiometric

calibrations, identical in form but with slightly different
calibration coefficients. Prelaunch calibration coefficients,

tailored for the two mirror sides, are provided by SBRC,

the instrument's manufacturer. After launch, however, tai-
lored information of this sort will not be available. For the

most part, SeaWiFS measurements of the moon will check

only the average response of the two mirror sides, since the

reflectivity of the lunar surface is not constant across its

face. However, with diffuser measurements, it will be pos-

sible to monitor scan-to-scan (mirror side to mirror side)

differences in the instrument's output (Section 4.2). In ad-
dition, it will be possible to check scan-to-scan differences

on orbit using Earth-exiting radiances from statistically
uniform bodies of water, that is, from clear water regions.

These conditions lead to the following philosophy for
monitoring the long-term repeatability of the radiometric

sensitivity of SeaWiFS. On-orbit and ground-based mea-
surements will be used to monitor the change, on average,

of the eight instrument bands. Thus, neither of the two
mirror sides is considered as prime, and neither as sec-

ondary. Measurements of the average radiometric calibra-
tion coefficients combined with measurements of scan-to-

scan differences will be used to calculate the coefficients

for the two mirror sides, in a manner that the values for

the mirror sides are equally distant from the average. In
addition to the measurements presented, ocean measure-

ments on orbit can be used to check the magnitude of scan
line-to-scan line differences.

4.2 Scan-to-Scan Difference Equation

Side-to-side differences in the half-angle mirror will be
characterized by the manufacturer before launch. There

may be changes in the side-to-side characteristics of the
half-angle mirror during the course of the mission. The

average reflectance for the two mirror sides is an inherent
part in the 20 scans that cover the surface of the moon in
a lunar measurement and in the 480 scan lines of a diffuser

measurement. However, the magnitude of the side-to-side

differences in the half-angle mirror can be tracked during
standard measurements of the instrument's diffuser. Dur-

ing each diffuser measurement, there are 240 pairs of half-

angle measurements between the two mirror sides to be
used to calculate the differences. These differences trans-

form into scan line-to-scan line differences in the ocean

measurements. The magnitude of the scan to scan dif-
ferences will be tracked as part of the onboard calibration
information from SeaWiFS and will be used in the determi-

nation of the two sets of calibration coefficients. Strictly

speaking, these differences are not part of the long-term
radiometric calibration for the instrument.

Mirror side differences for a given SeaWiFS band are

treated independently in the following equation:

nl = (c, + c_)/(c_ + c_), (1)

where R1 is the radiance value measured with side 1 of the

half-angle mirror, relative to the average radiance from the

two sides, with a value very close to unity; (C1 + C1)/(C1 +
C2) is the calculation used to obtain R1, with a value very
close to unity; and C1 and C2 are measured values of the

flight diffuser for sequential scan lines, as described above,

in counts. R1 and R2 (defined immediately below) are
dimensionless quantities.

The value for the radiance measured with side 2 of the

half-angle mirror, relative to the average radiance from the

two sides, can also be calculated directly:

t_ = (c2 + c2)/(c1 + c_), (2)
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where R2 is the radiance value measured with side 2 of the

half-angle mirror, relative to the average radiance from the

two sides, with a value very close to unity.
Both R1 and R2 are relative values, multipliers that

will be applied to the calibration constants, below, to give
the values for each of the mirror sides. These two constants

are calculated from laboratory measurements by the man-

ufacturer (Table 5).

5. CALIBRATION EQUATIONS

As with the equations for mirror side differences, the
radiometric calibrations are identical in form for each of

the SeaWiFS bands. Thus, the descriptions given here are

representative of each band. The prelaunch radiometric
calibrations for SeaWiFS are based on measurements by

the manufacturer. On orbit, there will be no mechanism

for monitoring changes of individual components within
the radiometer. SeaWiFS carries no onboard calibrators.

Among other things, there will be no means of determining

spectral shifts in the instrument's interference filters after

launch. In addition, there will be no means of isolating

transmission changes from other elements in the SeaWiFS

optical train. On orbit, it will be possible to monitor only

relative changes in the output of the radiometer's bands.

Information on the type of internal changes within those
bands will not be available. Before launch, there are abso-

lute quantities in the prelaunch radiometric constants for

the instrument that come from laboratory measurements.

There is a program in progress to check the transfer of the

prelaunch radiometric calibration of SeaWiFS to orbit at

the start of on-orbit operations (Biggar et al. 1993). After

that check is made, measurements on orbit will give only

the changes in the instrument's sensitivity relative to that
at launch.

5.1 Calibration Equation Factors

There are several factors that must be considered in

the determination of the radiometric sensitivity of the Sea-

WiFS radiometer. Laboratory measurements of the instru-

ment's sensitivity have been made with a fixed set up of the

8
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commandable variables for the radiometer. For example,
these measurements have been made at Science Gain 1,

and the instrument's sensitivity at the other three gains
has been determined relative to Science Gain 1. How-

ever, on orbit the long-term repeatability of the SeaWiFS

measurements will be made, using scans of the moon at

the lunar gain. The principal gain for monitoring instru-

ment operation on orbit is different from the principal gain

for laboratory measurements. For practical considerations,
the knees and endpoints for the eight SeaWiFS bands have

been calculated in terms of the radiometric sensitivity of
the four channels in each band.

Table 5. Prelaunch mirror side factors. R1 and R2
are dimensionless quantities.

Band Center R1

Wavelength [nm]

412 1.002

443 1.001
490 1.001

510 1.001

555 1.002

670 1.002

765 1.001

865 1.003

R2

0.998

0.999

0.999
0.999

0.998

0.998

0.999

0.997

The term gain has been present in discussions of the op-

eration of the instrument since the inception of the Ocean

Color Specifications. It is preferable to refer to the gains as

sensitivity factors, with units of radiance per count. The
higher the gain for a measurement, i.e., the greater the

number of counts per unit radiance, the lower the satura-

tion radiance, and the higher the sensitivity per count.

This format for the calibration equations reflects the
on-orbit conditions for SeaWiFS. The SeaWiFS instrument

has no onboard mechanism to monitor the absolute accu-

racy of the measured radiances. During the anticipated
5-10 year lifetime of the radiometer, the SeaWiFS Project

will be able to detect relative changes in the sensitivity
of the instrument only. After launch, lunar measurements

will be used to monitor these changes as described below,
and onboard measurements will be used to detect relative

changes among the four electronic gains for each SeaWiFS

band and among the four photodiodes for each band.

The relationships between individual gains are mea-

sured with a common electronic voltage, a calibration pulse,
added to the photodiode output while the instrument views

the inner surface of the back of the instrument. This pro-

cess is discussed in more detail in Woodward et al. (1993).
Relative changes among the individual detectors in a Sea-

WiFS band will be monitored by having the detectors

view the instrument's diffuser sequentially several times
while the diffuser is illuminated by the sun. This can be

done, since each possible detector combination can be com-

manded from the ground. The relationship among the high

W. Esaias, C. McClain, and T. Svitek

sensitivity detectors will be treated comparatively, i.e., ex-
amining the change with time in the output of any one of

the high sensitivity detectors in comparison to the group-
ing comprised of the other detectors. Sufficient anomalous

behavior of a single detector will cause the removal of that

detector from the measurement set. Again, this process is

discussed in more detail in Woodward et al. (1993).
Other factors in the radiometric calibration equations

are not expected to change over time. These include the

dependence of the radiometric sensitivity on the tempera-
ture of the focal planes and the dependence of the radio-

metric sensitivity on the scan angle of the measurement.
Although there will be thermistors to measure the tem-

perature of each focal plane during the SeaWiFS mission,
there will be no on board means of measuring changes in

the temperature dependence of the output from the de-
tectors. In a like manner, no means has been found of

checking, after launch, changes in the instrument's radio-
metric sensitivity at the edge of the SeaWiFS scan relative

to the sensitivity at nadir. These factors are determined

solely from prelaunch measurements by the manufacturer,

as explained in a review of the CZCS calibration by Evans
and Gordon (1994).

5.2 Long-Term Sensitivity

Long-term changes in the radiometric sensitivity of the

eight SeaWiFS bands will be made using measurements of
the reflected solar flux from the surface of the moon. These

measurements will be complimented by vicarious, ground-
and ocean-based measurements. The sun is considered as

a stable, non-changing light source, and the surface of the

moon is considered as unchanging over periods that are
short on a geologic time scale. Variations in the solar flux

incident on the lunar surface due to changes in the Earth-

sun distance can be removed (Woodward et al. 1993). In
a similar manner, variations in the reflectance of the moon

due to small differences in the lunar phase angle and due
to small changes resulting from lunar libration can also be
removed. With these corrections the effective reflectance

from the surface of the moon can be made essentially con-
stant. Changes in the SeaWiFS measured values for the

lunar radiance will be used directly to detect changes in
the sensitivity of the instrument.

For solar measurements with the SeaWiFS diffuser, it

is not possible to separate changes in the instrument sen-
sitivity from changes in the diffuser reflectance in such a
direct manner. All that can be derived from the diffuser

measurements themselves is the product of the change in
the instrument and of the change in the diffuser. There is
an assumption, however, that will allow the diffuser and

the lunar measurements to be tied together. Basically, the
change in the reflectance of the diffuser is assumed to be

linear over time periods of approximately one month (Ce-
bula et ah 1988 and Herman et al. 1990). Experience with
diffusers on previous satellite instruments has led to the ex-

planation that diffuser degradation has been caused by the
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coatingof thediffuserwithsolarizedorganicandsilicon-
basedmaterialsthat haveoutgassedfromthespacecraft.
Theaccumulationof thin layersof thesematerialsdoes
not leadto sharpstepfunctionsin thereflectivityof the
diffuserovertime.

Overlongertimeperiodsof oneto severalyears,the
changein thereflectanceof thediffuserisexpectedto be-
comeanexponentialfunctionof time,asymptoticallyap-
proachingzerochangewith timeastheSeaWiFSmission
ends.However,this 5-10yearlongexponentialfunction
canbetreatedasaseriesofmanylinearsegmentsthatare
amonthin duration.

Usingnearlysimultaneouslunaranddiffusermeasure-
ments,it ispossibleto separatechangesin thesensitivity
of the instrument,determinedfromlunarmeasurements,
fromchangesin thereflectanceof thediffuser.Whenthe
time-seriesof diffuserreflectancesis normalizedbylunar
measurements,it ispossibleto usetheassumptionofalin-
earchangeindiffuserrefiectivitytoidentifystepchangesin
the instrumentsensitivitythat mayoccurbetweenlunar
measurements.Suchchangeswerefoundin CZCSmea-
surements(EvansandGordon1994).

5.3 Long-Term Sensitivity Equation
Thelong-termsensitivityequationfortheradiometer

containsonlyfactorsthat canchangeduringthelifetimeof
the SeaWiFSmission.Theseincludetwocommandvari-
ablesthatcanbechangedfromtheground;theselectionof
theelectronicgains,andthedetectorconfiguration.They
alsoincludetime-dependentvariableswhosechangecanbe
monitoredduringthemission,thetemperaturesofthefo-
calplanesasmeasuredbythermistors,andthelong-term
radiometricsensitivitiesoftheinstrumentbandsasdeter-
minedthroughlunaranddiffusermeasurements.

Thelong-termsensitivityequationdoesnotincludethe
scanangledependenceoftheradiometricsensitivityofthe
radiometer(alsocalledscanmodulation),i.e.,thesensi-
tivity oftheinstrumentformeasurementsat thelimbrel-
ativeto thoseat nadir. Thesevaluesaredeterminedby
themanufacturerandcannotbeindependentlyverifiedon
orbit. Theeffectofscanmodulationwill beaddedto the
overallradiometricsensitivityequationin thenextsection.

In addition,the long-termsensitivityequationdoes
not includechangesin the linearityin thedetectorre-
sponsewith inputradiance.Again,thesevaluesaredeter-
minedsolelythroughmeasurementsbythemanufacturer
andcannotbecheckedafterlaunch.A discussionof the
manufacturer'smeasurementsisgivenbelow.

Theon-orbitequationfor thetimedependentradio-
metricsensitivityofeachSeaWiFSband,at nadir,hasthe
followingform:

Lnadir ----- KI(t) × K2(gs, ds)

x (1 + K3(T-Tref)) (3)

X (Cout - Cdark).

The variables in (3) are defined as follows:

1. Lnadir is the measured radiance at nadir, in mW

cm -2 sr- 1#m- 1.

2. K1, which is a function of the time, is the primary

instrument sensitivity factor expressed as the in-

verse of the number of days post-launch, and there-

fore equal to unity at the start of the SeaWiFS mis-
sion. This factor applies equally to each of the four

gains in a SeaWiFS band.

3. t is the time, in days, after the start of on-orbit

measurements by SeaWiFS.

4. K2 is the gain factor, in mWcm-2sr-l#m -1 per

count.

5. gs is the gain selected by command from the ground

and present in a datum from the spacecraft engi-

neering telemetry that precedes each scan line.

6. ds is the detector configuration selected by com-

mand from the ground and present in a datum from

the spacecraft engineering telemetry that precedes
each scan line.

7. (1 + K3(T-Tref)) is the focal plane temperature
factor, a dimensionless value very close to unity.

8. K3 is the temperature dependence of the output
from the detector, in terms of inverse degrees Cel-

sius, with a value very close to zero, as measured

by the manufacturer.

9. T is the measured temperature of the focal plane

assembly, in degrees Celsius, calculated from a da-
tum in the engineering telemetry stream associated
with each scan line.

10. Tref is the reference temperature for the tempera-

ture dependence, 20 ° C, set by the manufacturer.

11. Cout is the instrument output, in counts.

12. Cdark is the instrument dark restore value, in counts.

The calculation of the focal plane temperatures (T)

from the data in the spacecraft engineering telemetry re-
quires several steps. As a result, the presentation of the

temperature calculations is deferred to Section 8.0, where

the eight values for/(3, one for each band, are also listed

(Tables 10 and 11).
The primary instrument sensitivity for each SeaWiFS

band, Kl(t), is calculated from a combined set of lunar

and diffuser measurements. There are also plans to derive

this factor independently using ground based calibrations

once the radiometer is collecting data on orbit. It is an-
ticipated that the time series of K1 (t) values for periods

through each lunar measurement will be updated and sent

to the SeaWiFS stations approximately two weeks after
that measurement. As the ensemble of lunar and diffuser

measurements grows, improved time histories of the K1 (t)
values will be supplied. In addition, as the rate of change of

the K1 (t) values becomes understood, it will be possible to

give improved, educated guesses regarding future changes

in the K1 (t) values. Until reasonable time series for K1 (t)

10
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valuesareestablished,theseKl(t) values will be treated

on orbit as constants during the time periods between the
most recent and the next lunar measurement and then will

be updated using the next lunar measurement.

Since all four gains for each SeaWiFS band--the four

values of K2(gs)--will be used frequently during the ra-

diometer's mission, calibration coefficients for all of the

SeaWiFS bands will be contained in a periodically updated

list that will be provided to each of the ground stations.
These values will be given in a table of the knees and end-

points for the bilinear gains, using the form of Table 4.

In addition, one word showing the command variable that

determines the choice of the gain will be present in the en-

gineering telemetry that precedes each scan line from the
satellite.

The relative values for these gains will be monitored

regularly during the mission (Woodward et al. 1993). The

value for the lunar gain for each SeaWiFS band, i.e., the

radiance per count for the lunar gain, will not change with

time during the SeaWiFS mission. Since the change in the

sensitivity of the instrument is determined through mea-

surements of the moon, changes in the lunar gain will be

found in Kl(t) for each band only. Changes in the values

of the other gains relative to the lunar gain will be updated

as determined. Changes in the gain ratios are anticipated

to be small over time, if detectable at all. However, time

series for the gain ratios for the eight instrument bands
will be provided by the Project.

It is anticipated that the standard detector selection,

ds, will not change during the SeaWiFS mission. For a
given instrument band, that standard selection uses the

sum of the output of the four detectors divided by four.

Using the comparative method of the previous section, it is
anticipated that none of the detectors will exhibit anoma-

lous behavior and have to be removed from the measure-

ment set. Should this occur, however, a new table of knees

and endpoints for the bilinear gains will be supplied by

the Project. In addition, a datum showing the command

variable that determines the detector configuration will be
present in the engineering telemetry that precedes each
scan line from the instrument.

The focal plane temperature factor, 1 + K3(T-Tref),

contains two constants that are supplied from measure-
ments by the radiometer's manufacturer: K3 and Tref. For

all eight SeaWiFS bands, the constant Tre_ is set to 20° C.

The calculation of the temperature of the two detectors

on each focal plane requires the conversion of engineering
telemetry from the SeaStar spacecraft, in counts, into an

analog signal from SeaWiFS, in volts, and then into tem-

perature, in degrees Celsius. The conversion from volts to

temperature requires a series of algebraic manipulations.

These manipulations are not conceptually difficult, but

they do require several steps of computation. The series

of calculations required to obtain the focal plane temper-
atures is found in Section 8.0. This section also contains

the eight values that are required for the calculation of the
temperature correction.

Thermal models of the operation of the SeaWiFS in-

strument indicate that the anticipated day-night tempera-
ture differences for a single orbit are on the order of 1° C.

However, as the instrument's thermal blankets age over
the 5-10 year duration of the SeaWiFS mission, the av-

erage temperatures of the focal planes are anticipated to
increase slowly at the rate of 1-2 ° Celsius per year.

5.4 Off-Nadir Measurement Differences

The primary laboratory measurements of the radiomet-
ric response of the SeaWiFS instrument have been made

in the laboratory at nadir, i.e., pixel 643. Although not ex-

plicitly stated in the SeaWiFS performance specifications,

it is important to know how the measurement at pixel 643
can be transferred to the other pixels in the scan. SBRC

ran such tests during its characterization of the instrument.

In the presentation of the test results, SBRC referred to
the effect as scan modulation.

The data from these tests were taken approximately
at nadir and at 100 pixel intervals above and below nadir.

Data were taken for both mirror sides, and the off-nadir re-
sponses for the two mirror sides were identical at the 0.2%

level, which is the resolution limit for the laboratory mea-
surements. Overall the measurements can be summarized
as follows:

1. All bands show changes in their responses with pixel

number. These changes are small, ranging from 1%
to 2% over the 1,285 pixels of a scan line.

2. The scan modulations for odd bands (bands 1, 3, 5,
and 7) show a marked similarity with each other, as
do the scan modulations for the even bands. The

odd and the even bands, however, show distinctly
different responses from each other.

3. The scan modulations can be fitted to quadratic

equations easily. It is possible to account for the

scan modulation in all eight bands with two equa-
tions, one for the even bands and one for the odd
ones.

4. The measurements by SBRC show no mirror side
differences in the scan modulation.

The data provided by SBRC did not include error bars
for the individual radiometric measurements. From the

results, however, it appears that the data have a scatter
at one standard deviation of about ± 0.3%. This scatter

falls above and below the linear results versus wavelength
discussed above. The average values for the responses of

the odd and even SeaWiFS bands are given in Fig. 6. The

quadratic curves in Fig. 6 show the off-nadir corrections
from the manufacturer for the odd and even bands.

The cause of the scan modulation has been explained
as vignetting (shadowing) of the detectors during portions

of the scan. The detectors can be considered as having

11
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the imageof thefieldstopimposeduponthem.Anyim-
perfectionof thealignmentoftheinstrument'sopticswill
causethe imageof thefieldstopto shift relativeto the
detectors.Tominimizestraylightenteringtheaft optics,
the imageof thefieldstopis 50%greaterthan thesize
of thedetectorsfor eachband. In the directionnormal
to thescanplane,thisgivesonlya one-quarterpixellee-
wayoneithersideof thedetectors.Imperfectalignment
oftheopticscausestheimageofthefieldstopto moverel-
ativeto thefocalplaneassemblies.Increasingthesizeof
thefieldstop,orcockingit slightly,couldeliminatemuch
of this effect.Thesechangeswerenot partof thestray
light improvementsby SBRC.However,a portionof the
straylightrepairsto SeaWiFSinvolvedworkonthefocal
planeassemblies.Therepositioningofthefocalplanesdur-
ingtheirreinstallationdidaffectthefinalscanmodulation
valuesslightly.

Thequadraticresponsecurves,calculatedbySBRC,
arebasedonmeasurementsoftheoutputoftheSBRCin-
tegratingsphereovera periodof about30minutes.To
viewthesphere,the instrumentwasrotatedto sevenan-
gularpositions,andthe radiancesfromthespherewere
recorded.Thepositionsfor themeasurementswereap-
proximately220pixelsapartandcoveredtherangefrom
1-1,285pixels.Smallchangesin theoutputofthesphere
mayhaveaddeda scatterof a fewtenthsof a percentto
themeasurementsbytheinstrument.

Thescanmodulationresponsecurvesequalunityat
nadir.Forotherpixels,thecurvesderivedbySBRCgive
thedifferenceofthe instrumentmeasurements,in relative
terms,fromthevalueat nadir.Thecorrectionsto thecal-
ibrationequationsaretheinverseofthecalculatedinstru-
mentresponsesfromSBRC.TheSBRCresponsecurves
showstheoutputof oddbandsat pixel1 to be1%lower
thanthoseat pixel643.Tocorrectfor this,1%mustbe
addedto thevaluesfromtheoddbandsat pixel1.

Thisis thescanmodulationcorrection:
1

K4(Pxl) = 1 + A0(Px1-643) + Bo(Px1-643) 2' (4),

where Pxl represents the pixel number, and where Ao =

3.115 x 10 -6 and B0 = -1.929 x 10 -s for odd bands, and
A0 = 1.713 x 10 -5 and Bo = -1.456 x 10 -s for even bands.

For all bands, K4(Pxl) is equal to unity at nadir. As a
result, this factor can be applied to (3) to cover all pixels

in each scan. For a SeaWiFS band, the values over a scan
line are given as

Lsca, = Kl(t) x K2(gs, ds)

× (1 + K3(T-Tref)) (5)

x K4(Pxl) × (Cout--Cdark),

where Lscan is the measured radiance at any pixel in a scan,

in mWcm -2 sr -1 #m -1.

Equation (5) does not consider the mirror side differ-

ences in the instrument. Except for the variable, K1, none

of the variables have any mirror side dependence. Based on

considerations in the methods for determining long-term
changes in the instrument's sensitivity, K1 has also been
defined without a mirror side effect.

5.5 Full-Up Equations

The use of the radiometric calibration equations on or-

bit will require the consideration of the two sides of the

half-angle mirror. This factor has been described above,

including the factor R1 for mirror side 1 and R2 for mirror

side 2. When these two factors are included, (5) can be
modified to produce two equations with the form:

and

LS1 = R1 x Kl(t) x K2(gs, ds)

x (1 + g3(T-Tra))

X g4(Pxl ) x (Cout--Cdark),

(6)

LS2 = R2 x Kl(t) x K2(gs, ds)

× (1 + K3 x (T-Tref)) (7)

x Ka(Pxl) x (Cout--Cdark).

The variables in (6) and (7) are defined as follows:

1. LS1 is the measured radiance for mirror side 1, in
mW cm-2 sr-1 #m -1.

2. R1 is the dimensionless multiplier for mirror side 1

from (1).

3. LS2 is the measured radiance for mirror side 2, in
mW cm-2 sr-1 pm-1.

4. R2 is the dimensionless multiplier for mirror side 2

from (2).

Equations (6) and (7) are the two on-orbit radiometric

calibration equations for SeaWiFS.

5.6 Instrument Response Linearity

Equations (6) and (7) are based on the assumption that
the measured radiance is a linear function of the number of

counts in the instrument's output. The SeaWiFS perfor-

mance specifications call for the output to be linear with
radiance at the 1% level or better. For the six shortest

wavelength SeaWiFS bands (412, 443, 490, 510, 555, and

670 nm), the measurements at SBRC show the linearity to

be at the 0.5% level. For bands 7 and 8 (765 and 865 nm),
the laboratory measurements show linearities that are bet-

ter than the specifications, but not at the levels of the other
six bands.

The measurements of the linearity of SeaWiFS were
made using an integrating sphere. The radiances from

the sphere were determined using a laboratory radiometer
that compared the sphere's output to that from a standard

lamp that has been calibrated by the National Institute of

Standards and Technology (NIST). The radiances required

for measurements of SeaWiFS at 765 and 865 nm are very
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smallwhencomparedto the outputfromthe standard
lampat thesewavelengths.Forthetransferradiometer,
theselevelsweresolowthatnoisein thetransfermeasure-
mentapproached1%.

Fromthisevidence,theconclusionisthattherelatively
poor linearity in the SeaWiFS laboratory measurements
at 765 and 865 nm is due to limits in the quality of the

characterization of the sphere itself. It is also concluded

that the readings for all eight SeaWiFS bands are linear

with input radiance at the level of 0.5% (Barnes et al.

1994). There is no term in the instrument's calibration

equations for non-linear response.

5.7 Polarization Sensitivity

The degree of polarization of the eight SeaWiFS bands
is measured in the laboratory using a polarizer that is ro-

tated through 360 ° in 22.5 ° intervals. Over this angular
range, the instrument bands should show two cycles of

response. The response from SeaWiFS band 1 is shown

in Fig. 7. There is little indication of the predicted two-

cycle response. It is more reasonable to conclude that the
variations in the instrument output shown in Fig. 7 are

indicative of changes in the transmission of the polarizer

with angle. Barnes et al. (1994) used Fourier analysis to
expose the two-cycle signal. Their results indicate that

polarization in the instrument is 0.25% or less.
The measurements in Fig. 7 are taken at pixel 633, near

nadir. The response in this figure is also representative

of the instrument responses at 30 ° and 55 ° from nadir.

From the polarization measurements at these three angles,

the polarization of SeaWiFS remains at 0.25% or less over
a scan. There is no term in the instrument's calibration

equations for polarization sensitivity.

6. GAIN FACTORS

The relative differences in the four sensitivity coeffi-

cients for each band result from different selectable gains

in one of the intermediate amplifiers in the instrument's

electronics. The SeaWiFS specifications give the gain re-

quirements for gains 2, 3, and 4 relative to gain 1. Gain

1 is the principal science gain. Gain 2 is the secondary
science gain with a radiometric sensitivity twice that for

gain 1, that is, one count from Science Gain 2 represents
half the radiance for one count from Science Gain 1.

6.1 Gain Ratios

6.1.1 Individual Channels

The gains in the intermediate amplifiers have also been
set up to give a three-quarters full scale output for lunar
measurements and for solar measurements, using the flight

diffuser. Details of the lunar and solar measurements can

be found in McClain et al. (1992) and in Woodward et al.

(1993). The gain values for the 32 SeaWiFS channels are

listed in Table 6 and are based on laboratory measurements

by SBRC. The gain ratios are given with respect to Science
Gain 1.

The gain ratios in Table 6 show little channel-to-channel

variability. The four channels in band 1 can be taken as

an example. For channel 1, the gain ratios for the four

gains in Table 6 are all equal to unity. Channel 1 is the
cloud channel, and those values should all be unity. In the

calibration data from SBRC, the measured gain ratios for

band 1-channel 1 are 1.016 (G2/G1), 1.005 (G3/G1), and

1.010 (G4/G1). These differences are assumed to come
from noise in the measured counts for each gain. That
noise amounts to 2 or 3 counts out of 220. The data

for each gain have a single calibration datum and a sin-

gle zero. On orbit, there will be the capacity to take 25

calibration points and 25 zeros from each calibration pulse

scan. This will improve the on-orbit gain ratios signifi-

cantly when compared with the prelaunch measurements.

As a result, the gain ratios for the cloud channels have
all been set to unity to eliminate the effects of noise in

the measurements. In addition, there has been an aver-

aging of gain ratios in the high sensitivity channels. For

band 1-gain 2, the three high sensitivity bands all have the

same gain ratio in Table 6 (1.988). In the calibration data
from SBRC, the measured gain ratios are 1.987 (channel

2), 1.982 (channel 3), and 1.995 (channel 4). As with the
measurements of the cloud channel, there is noise in these

gain ratios. In the prelaunch data, the gain ratios have
been set to the average of the three channels to remove

noise. On orbit, it will be possible to measure these ra-

tios with greater precision. Until then, it is not possible

to distinguish between noise in the gain measurements of

the high sensitivity channels and small differences in their

gains.

6.1.2 Combinations of Channels

The gain ratios in Table 6 are given for individual chan-
nels. It is possible to calculate these ratios for combina-
tions of channels. Such ratios can be calculated for the

standard SeaWiFS detector configuration, 4:1 TDI, where

the output is the sum of the four channels. The calcula-

tions are based on the procedure outlined in Tables 1-4.

They can be explained by using the values from SeaWiFS
band 1. The gain ratios for the high sensitivity channels

for band 1-gain 2 are 1.988 (Table 6). This means that
a channel will produce 1.988 counts per unit radiance at

gain 2 if the channel gives one count per unit radiance at

gain 1. Conversely, if gain 1 has a sensitivity of one unit of

radiance per count, gain 2 will have a sensitivity of 1/1.988

unit of radiance per count.

For gain 2 calculations, 1/1.988 is the fractional mul-

tiplier applied to the sensitivities for channels 2, 3, and 4
from Table 1. For gain 2, the sensitivities of these channels

are approximately 0.005 mW per count (Table 1). With

these three sensitivities and the sensitivity for channel 1,
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Table 6. Gain ratios for the SeaWiFS channels, relative to Gain 1. The gains for the cloud detection channels
for each band do not change with the gain selection.

Band

3

4

Channel Gain 1 Gain 2 Gain 3 Gain 4

(G2/G,) (G3/GI) (G4/GI)

1 1.000 1.000 1.000 1.000
2 1.000 1.988 1.320 1.681

3 1.000 1.988 1.320 1.681

4 1.000 1.988 1.320 1.681

1 1.000 1.989 1.319 1.682

2 1.000 1.989 1.319 1.682

3 1.000 1.989 1.319 1.682

4 1.000 1.000 1.000 1.000

1 1.000 1.000 1.000 1.000

2 1.000 1.989 0.896 1.681

3 1.000 1.989 0.896 1.681
4 1.000 1.989 0.896 1.681

1 1.000 1.989 0.789 1.682

2 1.000 1.989 0.789 1.682
3 1.000 1.989 0.789 1.682

4 1.000 1.000 1.000 1.000

1 1.000 1.000 1.000 1.000

2 1.000 1.989 0.642 1.595

3 1.000 1.989 0.642 1.595

4 1.000 1.989 0.642 1.595

1 1.000 1.989 0.364 0.665

2 1.000 1.989 0.364 0.665

3 1.000 1.989 0.364 0.665

4 1.000 1.000 1.000 1.000

1 1.000 1.000 1.000 1.000

2 1.000 1.987 0.311 0.575

3 1.000 1.987 0.311 0.575

4 1.000 1.987 0.311 0.575

1 1.000 1.991 0.261 0.499
2 1.000 1.991 0.261 0.499

3 1.000 1.991 0.261 0.499

4 1.000 1.000 1.000 1.000

which has not changed, it is possible to work through the
calculations in the manner of those in Table 2 and 3. The

results give three new knees for the bilinear gains, both in
radiance and in counts. The upper endpoint remains the
same, since the sensitivity for channel 1 has not changed.

Using the zero values plus those from the first knee in

the bilinear gain, it is possible to calculate the sensitivity
of band 1 in the radiance region for ocean measurements.

The ratio of the sensitivities for gain 1 and gain 2 give
the gain ratio for these gains with the standard detector

configuration (Table 7). Table 7 also lists the gains that are
used for lunar and solar measurements. These lunar and

solar gains agree with the gains required by the SeaWiFS
performance specifications.

From this discussion, it follows that the calculation

method in Tables 1-4 is fundamental to the operation of

the bilinear gains. If the gain of a channel or combination

of channels changes, then new knees must be calculated

using the procedure from Tables 1-4.

6.2 Lunar Measurements

Once on orbit, the monitoring of the long-term repeata-

bility of SeaWiFS measurements will be done by viewing

the moon. On orbit, the changes in the sensitivities of the
science gains will be based on measurements of the moon

at the lunar gains. The lunar gains will be treated as a

constant throughout the SeaWiFS mission. Changes in
the measured lunar radiance, with the real lunar radiance

remaining constant, will result in corresponding changes

to the variable K1, also described in (3). The lunar gains

in these interchannel measurements will be kept constant,
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Fig. 7. Polarization sensitivity

and the gain ratios for the other gains will be allowed to
vary. These are important considerations for an instru-
ment whose long-term repeatability will be monitored by

lunar, rather than terrestrial, measurements. Among other

things, these considerations require a change in viewpoint
from terrestrial to lunar measurements by those tracking

changes in the instrument's sensitivity on orbit.

Table 7. SeaWiFS gain values for the standard de-
tector configuration. These values are given relative
to gain 1. The nominal value for gain setting 2 is 2.
The gains used for the lunar measurement and for
the solar diffuser measurement are shown. These

gains cover the measurement regions from zero ra-
diance to the first knees in the bilinear gains.

Band Gain 1 Gain 2 Gain 3 Gain 4

1

2

3
4

5
6

7

8

1.000 1.931§ 1.302 1.6421
1.000 1.940 1.303f 1.648§

1.000§ 1.951 0.900t 1.655
1.000§ 1.955 0.7961 1.658

1.000§ 1.961 0.6521" 1.579
1.000 1.969 0.376i- 0.671{]

1.000 1.969 0.3231 0.583§

1.000 1.975 0.2721 0.507§
Gain used for solar diffuser measurement.

Gain used for lunar measurement.

The SeaWiFS calibration plan (McClain et al. 1992)

includes a program of ground based measurements, pri-
marily measurements of water-leaving radiances with field

of SeaWiFS band 1 (412 nm).

instruments, in conjunction with SeaWiFS measurements
on orbit. This calibration plan has been developed to make
both the vicarious and satellite measurements traceable to

a single set of laboratory standards so that ground and on
orbit measurements can be reconciled. For the vicarious

measurements, there is an ongoing program of round-robin

intercalibrations of field instruments using NIST-traceable

standards (Mueller 1993). The reconciliation of vicarious
and on-orbit measurements also requires knowledge of the

atmospheric transmission of light at the SeaWiFS wave-

lengths. For the SeaWiFS mission, this knowledge is de-
rived from a set of models of the atmosphere that include

light scattering by molecules of air, Rayleigh scattering,

and by small particles, Mie scattering (H. Gordon, pets.

comm.). These models will play a fundamental role in
the reconciliation of the on-orbit radiance measurements

from SeaWiFS and the water-leaving radiance measure-
ments from field instruments.

The on-orbit monitoring scheme for the long-term re-

peatability of SeaWiFS measurements as described here,

and also found in Woodward et al. (1993), comprises a
closed set of measurements made by the satellite instru-

ment only. The set of ground based measurements pro-

posed in the SeaWiFS calibration plan (McClain et al.

1992) will be performed in conjunction with SeaWiFS mea-

surements during satellite overpasses of the ground, or

ocean, sites. The ground based measurements will com-

plement the set of satellite based, long-term repeatability
measurements described here. Ultimately, the combined
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Table8. InputvaluesandcalculatedsensitivitiesfortheeightSeaWiFSbands.Theradiances,themeasurement
counts,andtheoffsetcountscomefromlaboratorydata.Thesensitivitiesarecalculatedfromtheradiancesand
the net counts. The values are given for Science Gain 1, the standard gain for SeaWiFS ocean measurements.

Band Channel Radiance Measurement Offset Net Counts Sensitivity

[mW] [counts] [counts] [mW/count]

1 9.246 175 21 154 0.060039

2 9.246 871 23 848 0.010903

3 9.246 859 18 841 0.010994

4 9.246 871 21 850 0.010878

1 9.122 883 18 865 0.010546

2 9.122 887 21 866 0.010533

3 9.122 878 16 862 0.010582

4 9.122 153 18 135 0.067570

1 7.216 127 21 106 0.068075

2 7.216 899 22 877 0.008228
3 7.216 905 21 884 0.008163

4 7.216 903 19 884 0.008163

1 5.970 856 21 835 0.007150

2 5.970 855 20 835 0.007150
3 5.970 856 19 837 0.007133

4 5.970 111 21 90 0.066333

1 4.692 98 26 72 0.065167
2 4.692 840 22 818 0.005736

3 4.692 837 22 815 0.005757

4 4.692 828 17 811 0.005785

1 1.682 540 21 519 0.003241

2 1.682 538 17 521 0.003228

3 1.682 544 33 511 0.003292

4 8.058 168 21 147 0.054816

1 9.885 253 23 230 0.042978

2 2.057 915 20 895 0.002298

3 2.057 913 21 892 0.002306

4 2.057 922 27 895 0.002298

1 1.063 671 20 651 0.001633

2 1.063 670 24 646 0.001646
3 1.063 671 18 653 0.001628

4 10.283 320 20 300 0.034277

set of satellite based and ground based measurements will
form the basis for the understanding of the SeaWiFS data
set.

7. CALIBRATION CONSTANTS

7.1 SeaWiFS Radiometric Calibration

The laboratory results of the SeaWiFS radiometric cal-

ibration are given in Table 8. The 32 listings in the table

show the input radiances and output counts for each chan-
nel of each band from the laboratory measurements. The

values are given for Science Gain 1. The sensitivities for
the channels are calculated from the radiances and the net

counts. The values from Table 8 are sufficient to calcu-

late the knees and endpoints for each band for all detector

combinations at Science Gain 1. The procedure outlined in

Tables 1-4 can be applied to any combination of channels.
For example, it is possible to combine channel 1 of band

1, taken once, with channel 2 of that band, taken three

times, to create a truly bilinear response, a response with
only one knee.

As discussed in Section 6.1, the gain ratios can be ap-
plied to the sensitivities in Table 8 to calculate the knees

for each band for gains 2, 3, and 4. The endpoints for these

gains will not change. The zero remains zero, and the up-
per endpoint is a function of the sensitivity of the cloud
channel, which also does not change. Both the radiance
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levelsandcountvaluesforthekneesareafunctionofthe
gainsettingsincethesensitivitiesofthreeof thechannels
change,whilethecloudchannelremainsconstant.

7.2 Out-of-Band Correction

There is an artifact of the radiometric calibration that
has not been discussed in the calibration data from SBRC.

The radiometric calibration of the instrument was per-

formed with an integrating sphere as the source of radi-

ance. The sphere has a wavelength dependent output that

can be approximated by a 2,850 K blackbody. This source

has a peak output near 1,000nm (Section 9.8, Fig. 17). On
orbit, SeaWiFS will measure input radiances with spectral

shapes that are similar to that from a 5,900 K blackbody,

which has a peak output near 490 nm.
The bandwidths for the SeaWiFS bands are 20 nm wide

for bands 1 through 6, and 40 nm wide for bands 7 and 8.
For these bandwidths, the spectral shape of the source has

little effect (Section 11). The SeaWiFS bands, however,
have small out-of-band responses (Section 9). The pho-
todiodes in each SeaWiFS band have a slightly different

output when illuminated by a 2,850 K or 5,900K source.

This output difference is of the order of a few percent or

less (Section 9.10). This output difference is also the same
for each channel of a band. The cloud and high sensitivity
channels for a band all have the same fractional change

in output when measuring these two sources. The out-of-

band effect changes the sensitivities of all four channels in

a band identically.

7.3 Bilinear Gain Calibration Constants

The calibration constants for the SeaWiFS bands are

listed in Table 9. The table gives the endpoints and the

knees for each band and gain. These values are given for
the standard detector combination, i.e., for the sum of the

four channels in each band.

Using the radiance levels and count values in Table 9,
it is possible to calculate the radiance corresponding to
each count for each band. Table 9 is the basis for the

calculation of the gain factors (K2 values) used in (3). For

computational purposes, it is also possible to prepare a
lookup table for each band and for each gain. The lookup
table would have approximately 32,000 entries, with about

1,000 entries for each of the four gains for each of the eight
bands. This lookup table applies only to the standard

detector configuration. Any changes to that configuration
would require the recalculation of Table 9. It would also

require the creation of a new lookup table, if one was used
in the on-orbit data reduction.

The knees and endpoints for band 1-gain 1 in Table 9
are not the same as those in Table 4. The radiances for

channel 1-gain 1 in Table 9 are 3.7% greater than the cor-

responding radiances in Table 4. This is the result of the

application of the out-of-band correction discussed in Sec-
tion 9.10. There is a smaller output from the photodiodes

for band 1 when it is exposed to a 5,900 K source, as mea-

sured on orbit, than when it is exposed to a 2,850 K source,

measured in the laboratory. The counts per unit radiance
of this band will be smaller on orbit than they are in the

laboratory.
It will take a 3.7% greater radiance to saturate the

channels of band 1 on orbit than is required to saturate

them in the laboratory. Thus, the radiances at the knees

and the upper endpoint for band 1-gain 1 in Table 9 are

3.7% greater than those in Table 4. These are the radiances
at which each channel of the band saturates.

The fractional change from the out-of-band correction

has only changed the radiances at the knees and the up-

per endpoint. The count values have remained the same.
This results from the fact that the out-of-band correction

affects the sensitivity of each channel in a band identically.

For band 1, each channel changes by 3.7%. For the other

bands, the fractional change is different (Section 9.10, Ta-

ble 12). The out-of-band corrections have been applied to
all bands and all channels in Table 9.

7.4 Out-of-Band Contributions

The out-of-band responses for the eight SeaWiFS bands

are parts of the instrument's radiometric calibration. In

that calibration, the instrument views a broad area of

known radiance, and records the output from the bands in
counts. The counts from each band include the out-of-band
contribution. Those out-of-band contributions are func-

tions of the spectral shape of the source that is measured.

The SeaWiFS laboratory calibration has the out-of-band

correction for a 2,850 K source factored into its results. If
the instrument measures a source with this spectral shape,

these measurements automatically contain the appropriate
out-of-band corrections.

The prelaunch calibration equations for SeaWiFS con-
tain correction terms that convert the out-of-band respon-

ses from a 2,850 K source to a 5,900 K source. As a result,

the SeaWiFS calibration equations now have the out-of-

band correction for a 5,900 K source factored into them.

The 5,900 K spectral shape closely duplicates the spectral

shape for SeaWiFS ocean measurements. The errors that
arise from the use of the 5,900 K out-of-band corrections

for ocean measurements are estimated to be small, i.e., a

few tenths of a percent. If an alternate out-of-band cor-

rection is to be used, then the 5,900 K correction must be

removed from the measurement results, and a new out-of-

band correction inserted in its place.

8. TEMPERATURE FACTORS

8.1 Dependence Coefficients

The information about the temperature sensors for the

focal plane assemblies includes the temperature dependen-
cies of the output of the eight SeaWiFS bands, the /{3
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Table9. PrelaunchcalibrationconstantsfortheSeaWiFSbilineargains.Thesevalueshavebeencorrectedfor
out-of-bandresponse(seeTable12fortheconversionfactor).Thesevaluesaregivenforthestandarddetector
configuration(eachchannelusedonce).Forallbandsandatall gainsettings,the instrumentwascalibratedto
givezerocountsat zeroradiance.

Band Gain Knee 1

Radiance Counts

1 1 793.64 11.313

2 771.09 5.691

3 782.64 8.571
4 775.26 6.731

2 1 789.10 10.734

2 769.69 5.397
3 779.67 8.140

4 773.27 6.382

3 1 779.55 8.343

2 764.62 4.194

3 783.05 9.315

4 767.39 4.963

4 1 778.79 7.175

2 765.37 3.607

3 786.02 9.098

4 767.85 4.267

5 1 769.72 5.794

2 758.77 2.913

3 782.02 9.029

4 761.50 3.631

6 1 763.41 3.211

2 756.05 1.615

3 789.32 8.831

4 770.87 4.829

7 1 759.48 2.300

2 752.87 1.158

3 788.94 7.390

4 769.31 3.999

8 1 762.22 1.618

2 756.28 0.813

3 796.06 6.206

4 774.20 3.243

Knee 2

Radiance Counts

793.84 11.317

771.27 5.693

782.83 8.547

775.45 6.734

791.34 10.778

771.85 5.420

781.86 8.174

775.44 6.408

780.61 8.360

765.64 4.202

784.11 9.333
768.42 4.973

779.00 7.178

765.57 3.609

786.23 9.101

768.05 4.268

771.63 5.815
760.64 2.923

783.97 9.062

763.38 3.645

763.48 3.212

756.12 1.615

789.40 8.832

770.95 4.830

763.07 2.317

756.41 1.166

792.73 7.442

772.97 4.027

762.77 1.620
756.82 0.813

796.64 6.213

774.76 3.246

Knee 3

Radiance Counts

797.76 11.469
774.89 5.769

786.60 8.688

779.12 6.824

792.93 10.837

773.33 5.449

783.40 8.218

776.94 6.444

782.00 8.401

766.96 4.224

785.52 9.379

769.74 4.998

779.28 7.185

765.84 3.612

786.52 9.110
768.32 4.272

774.33 5.872

763.23 2.952

786.80 9.152
766.00 3.681

764.36 3.223

756.97 1.620

790.36 8.861

771.85 4.846

763.69 2.323

757.01 1.169

793.43 7.460

773.61 4.036

Saturation

Radiance Counts

1,002.25 62.445

1,002.25 62.445

1,002.25 62.445
1,002.25 62.445

1,004.75 69.062

1,004.75 69.062

1,004.75 69.062

1,004.75 69.062

1,002.25 69.576

1,002.25 69.576

1,002.25 69.576

1,002.25 69.576

1,002.75 66.599

1,002.75 66.599

1,002.75 66.599

1,002.75 66.599

1,001.25 65.556

1,001.25 65.556

1,001.25 65.556

1,001.25 65.556

1,000.00 54.322

1,000.00 54.322
1,000.00 54.322

1,000.00 54.322

1,000.25 43.193
1,000.25 43.193

1,000.25 43.193

1,000.25 43.193

763.74 1.626

757.77 0.817
797.74 6.237

775.78 3.258

1,002.50 34.001

1,002.50 34.001

1,002.50 34.001

1,002.50 34.001

values. The reference temperature for the temperature de-

pendence (Tref) has been set to 20 ° C by SBRC. The vari-

able Ka and the constant Tref are used in (3), (5), (6), and

(7). The K3 values for the eight SeaWiFS bands are listed
in Tables 10 and 11.

The temperature corrections require knowledge of the

temperatures of the focal plane assemblies. The conver-

sion of the engineering information in the scan lines from

SeaStax into focal plane temperatures requires two steps

(Sections 8.2 and 8.3). Since there is only one temperature

sensor per focal plane assembly, the derived temperatures

for bands 1 and 2 will be identical, as will those for bands

3 and 4, and so forth. Thus, the coefficients for the calcu-

lation of these pairs of temperatures should be identical in

the following sections.

8.2 Data Conversion

In this section, the term voltages is used to refer to

voltages from SeaWiFS.

8.2.1 SeaStar Counts to Voltage

The voltages for every analog telemetry output from

SeaWiFS range from 0-5.11 volts. These voltages are trans-
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mittedto the groundby SeaStaras8 bit binarywords.
SincethecountsfromtheSeaWiFSradiancemeasurements
aretransmittedin 10bit binarywords,theanalogteleme-
try valuesarealsopackagedin 10bits. However,forthe
analogtelemetryvalues,onlyeightof those10bitsper
wordareused.

Table 10. Valuesin thetemperaturedependence
equations.Thistablecontainsthetemperaturede-
pendencycoefficients(K3) andthe coefficientsto
convertOSCtelemetrycountsto temperaturesen-
sotoutputvolts(Ks andK6).

Band K3 K5 K6

[(o C)-X] [volts/count] [volts]

1

2

3

4

5

6

7

8

0.000901

0.000585

0.000420
0.000390

0.000391

0.000151

0.000106

0.000078

0.020

0.020

0.020

0.020
0.020

0.020

0.020

0.020

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Table 11. Current output for the current source

diodes (KT). These data are given for a tempera-
ture of 20 ° C. A correction must be applied to these
data at other temperatures. Values are given for
the prime and backup temperature sensors for each
focal plane assembly. The backup sensor for bands
3 and 4 is ino )erative.

Band

1

2

3

4
5

6

7

8

K7 (prime)

[mA]
0.493

0.493
0.492

0.492

0.491

0.491

0.486
0.486

K7 (backup)

[mA]
0.484

0.484

Inoperative

Inoperative
0.497

0.497

0.492

0.492

1. VT is the output from the focal plane temperature

sensor, in volts.

2. K5 is the spacecraft analog-to-digital (AD) conver-

sion factor, in volts per count.

3. Ctemp is an 8-bit digital word in the SeaStar teleme-

try, in counts.

4. K6 is the offset in the spacecraft AD conversion, in
volts.

8.2.2 Voltage to Focal Plane Temperature

The temperature detection circuit for each focal plane
assembly uses a precision thermistor in parallel with a
16.2 Kohm resistor. The current through the thermistor-

resistor pair is provided by a current source diode that has
a nominal output of 0.48 mA. The actual output of the cur-

rent sources at 20 ° C are given in Tables 10 and 11. The

output from the temperature sensor is the voltage across
the thermistor-resistor pair as caused by the current from

the diode. With knowledge of this voltage drop and of

the current from the source, it is possible to calculate the
effective resistance for the thermistor-resistor pair. With

knowledge of the value of the resistor, 16.2 Kohm, it is

then possible to calculate the actual resistance of the ther-
mistor. From the thermistor resistance, the temperature

of the focal plane assembly is derived using a conversion

equation that is specific for the type of thermistor in the

temperature sensor.
There is a small, additional complication to this cal-

culation. The output from the current source diode has a

small temperature dependence. The correction for current
source diodes requires an approximate temperature (TC)

for the focal plane assembly. TC is good to about 2°C

over the range from 5°C to 45 ° C. The details of these

calculations will be presented in a series of steps below.

The calculated focal plane temperatures are accurate to
0.3 ° C. This includes the uncertainty in the digitization of

the temperature sensor voltages by the SeaStar spacecraft.
1. Calculate the approximate temperature, with

TC = (5--VT) × 40/3, (9)

The SeaStar spacecraft will convert the analog voltages

from SeaWiFS using an ADC with a 5.12 volt reference

voltage. This will eliminate the need for scaling amplifiers
between SeaWiFS and the ADC. Since an 8 bit binary sig-

nal ranges from 0-255 counts, each count will have a value
of 0.02 volts, with 0 counts equal to 0 volts. This corre-

sponds to temperature sensor voltages that range from 0-
5.10 volts. This is the basis for the coefficients K5 and K6

in Tables 10 and 11. The conversion equation for SeaStar

telemetry counts to SeaWiFS temperature sensor voltages

is linear:

V T = K 5 X Ctemp q-K 6. (8)

The variables in (8) are defined as:

where TC is the approximate focal plane temperature, in

degrees Celsius.
2. Calculate the current from the current source diode,

including its temperature correction, with

ICS = K7-(0.0013 x (TC-20)), (10)

where ICS is the current from the current source diode,

in mA; /<7 is the current from the diode at 20 ° C, in mA

(Tables 10 and 11); and (0.0013 x (TC-20)) is the tem-
perature correction for the diode source, in mA.

3. Calculate the effective resistance for the thermistor-

resistor pair, with

RE = VT/ICS, (11)
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whereRE is the effective resistance for the thermistor-

resistor pair, in Kohms.

4. Calculate the resistance for the thermistor, with

RT = (16.2 x RE)/(16.2--RE), (12)

where RT is the resistance of the thermistor, in Kohms.

5. Calculate the focal plane temperature from the ther-

mistor resistance using the following conversion equation.

T = -341 + 5398.94/(ln(254898 x RT)), (13)

where T is the focal plane temperature, in degrees Celsius,

and the constants are given values for the type of thermis-

tor used in the temperature sensors.

The variable T, given for each SeaWiFS band, is used

in equations (3), (5), (6), and (7). The working range for

these temperature calculations is about +5 ° C to +45 ° C,

which roughly corresponds to the range 1.7-5.0 volts, or
about 85-250 counts.

9. SPECTRAL RESPONSE

SBRC's primary method for determining the spectral

response of SeaWiFS is based on the measurement of the

individual piece parts in the instrument's optical train.

The transmission and reflection characteristics of the piece

parts and the responsivity of the detectors are multiplied
together to give the optical throughput of the eight Sea-
WiFS bands at 1 nm intervals. The results of the calcu-

lations are given as amperes of electrical current from the

photodiode per watt of radiant flux at each 1 nm interval.

This throughput must be combined with a radiance source
having the spectral shape of the sun to give the total out-

put of each band for the full range of wavelengths.

SBRC's secondary method is based on a system level

measurement using a monochromatic light source. This

source employs a single monochromator to provide light in-

put with a spectral width of about 1 nm and with a known
radiant flux at each wavelength. In this method, the out-

put of the photodiode is measured, in amperes, for a known

radiant flux from the monochromator, in watts, at each

1 nm interval, allowing the calculation of the throughput

of the instrument. This throughput is equivalent to that

from the piece part measurements. For SBRC, the system

level measurements give a double check of the piece part
calculations. The piece part values give the prime measure

of spectral response.

The system level measurements work reasonably well

in the wavelength range where there is at least a minimal

output from the band's photodiode. There are, however,
regions outside of the pass bands of the radiometer's opti-

cal components where the throughput of the system is suf-

ficiently close to zero, such that essentially no measurable

current comes from the photodiode. In these wavelength

regions, noise in the system level measurements dominates

the results. The piece part results give much better values,

since they are based on measurements of individual com-

ponents, each having a small throughput. At the system

level, the measurements in these regions include the prod-

uct of these small throughput contributions, which creates

an overall throughput at the system level that is immea-

surably small.

The following sections contain discussions of the spec-

tral responses of the individual parts for each SeaWiFS

band. These individual parts are shown in the aft op-

tics schematic (Fig. 3). It is important to note that the

piece part measurements in the following sections have

been made of interference filters taken from the produc-

tion run for the SeaWiFS flight filters. The piece part

measurements have not been made with the actual flight
filters.

9.1 Mirrors

There are five mirrors in the optical train for SeaWiFS.

Four of these are shown in Fig. 3. They are the primary

mirror, the polarization scrambler, the half-angle mirror,

and the collimator. The fifth mirror, a folding flat mirror

(not shown) is located after the collimating mirror (Fig. 17

of Woodward et al. 1993). Each of these mirrors uses sil-
ver as the reflecting surface, and four of these mirrors have

essentially the same spectral response. The reflectivity of
one of these four nearly identical mirrors has been mea-

sured at several wavelengths in the laboratory by SBRC.

Values between these wavelengths have been calcuiated by

linear interpolation. Figure 8 (top) shows the reflectivity
of one of the silver mirrors.

As part of the modifications to reduce stray light in Sea-

WiFS, the polarization scrambler was reworked to move

ghosts, in the direction normal to the scan plane, onto the

primary image. In this modification, the front surface of

the optical plate over the silver mirror in the scrambler
was tilted slightly, relative to the mirror. This change has

given the scrambler a slight wedge shape. A spectral scan

was made by SBRC of the reflectivity of the reworked po-

larization scrambler. This spectral response is also shown

in Fig. 8 (top).
The model for the combined reflectances of the five mir-

rors, including that for the polarization scrambler, is shown

in Fig. 8 (bottom). At each wavelength, the reflectance for

the silver mirror in Fig. 8 (top) is multiplied by itself four

times and then multiplied by the reflectance of the polar-
ization scrambler. This calculation accounts for the net

reflectance of these five mirrors in series in the SeaWiFS

optical train.

9.2 Lenses

There are four sets of lenses in the SeaWiFS aft op-

tics (Fig. 3). These sapphire lenses are spectrally flat over

wavelengths from 300-1,000 nm, covering the region of the
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SeaWiFSmeasurements.Thelenseshavetransmittances
of99%.Theyarenotincludedin thespectralresponsecal-
culations.Thelensesfocusthecollimatedlightthat has
passedthroughthedichroicsontothefocalplaneassem-
blies.Theanglewithwhichthis lightconvergesmustbe
consideredin themeasurementsofthespectralresponseof
thenarrowbandinterferencefilters.

9.3 Dichroics

The SeaWiFS radiometer uses three dichroics. In the

SeaWiFS application, these dichroics transmit light for

wavelengths above a reference wavelength in the dichroic's

design and reflect light below the reference wavelength.

The three SeaWiFS dichroics perform a prefiltering of the

radiance from the Earth, limiting the range of wavelengths

that reach the interference filters on each focal plane.

The dichroics and focal plane assemblies in SeaWiFS

are shown in schematic form in Fig. 3. In the schematic,

the light to the focal plane assembly for bands 7 and 8

(765 and 865nm) passes in a straight line through two

dichroics. These dichroics are numbered 1 (nearest the

collimator) and 3. The light for bands 5 and 6 (555 and
670 nm) is transmitted by dichroic 1 and then reflected by

dichroic 3. In Fig. 3, the focal plane assembly for bands 5

and 6 is located on the far right.

The focal plane assembly for bands 1 and 2 (412 and

443nm) is located behind the BG39 filter in Fig. 3. The
light for this focal plane is reflected off dichroics 1 and 2.

Dichroic 2 is located to the left of dichroic 1 in Fig. 3. The

remaining focal plane assembly, for bands 3 and 4 (490
and 510nm), receives light reflected from dichroic 1 and

transmitted by dichroic 2. This focal plane assembly is

located on the left most side of Fig. 3.

For each focal plane assembly, and its pair of Sea-

WiFS bands, light is either transmitted or reflected by
two dichroics. These dichroics play a major role in forming

the shapes of the spectral responses of the eight SeaWiFS

bands. This is particularly true in establishing the out-oh

band response of the instrument. The performance speci-
fications sent from SBRC to its filter manufacturer call for

the use of the dichroics to remove the transmission spikes

in regions well away from the pass band of the interference
filters. This has limited the number of filter elements re-

quired for the interference filters and has helped increase
the transmission of the interference filters to almost 100%

at their center wavelengths.

Figure 9 gives the spectral responses for the two dichro-

ics in the optical train for band 1. Figure 9 (top) gives
the reflectance curve for dichroic 1. The cutoff for reflec-

tion by this dichroic falls between 510nm (band 4) and

555 nm (band 5), separating the four shortest wavelength

bands from the four longest. When viewing Fig. 9 (top),
it should be remembered that a dichroic either transmits

light or reflects it. The dichroics and the interference filters

in SeaWiFS are designed without light absorbing compo-

nents. In regions where the reflectance is near 100%, the
transmittance is near 0%.

Figure 9 (bottom) gives the reflectance curve for di-

chroic 2. Its cutoff wavelength is between 443 nm (band 2)
and 490nm (band 3). Dichroics 1 and 2 keep most of the

longer wavelength radiation from the Earth from reach-

ing bands 1 and 2, which limits the wavelength range over
which the interference filters need to work.

For wavelengths above 1,140nm, the SBRC measure-

ments of dichroic 1 (Fig. 9, top) gave reflectances lower
than the resolution of the laboratory equipment. For these

wavelengths, the laboratory readings were zero. The val-

ues from the dichroics contribute to spectral responses pre-

sented in the following sections. These results are pre-

sented as a set of logarithmic plots. As a result, the zero
values for dichroic 1 in this technical memorandum have

been replaced with amounts that are equal to the lowest
reflectance in the rest of the dichroic measurements. Sim-

ilar measures have been taken at other places where the
SBRC data set has values of zero.

9.4 Broadband Filters

There are two pieces of Schott color glass filters in the

SeaWiFS aft optics assembly (Fig. 3). These broadband

filters were not part of the original SeaWiFS optical design.

The two filters (BG39 and BG26 in the figure) were added

to the instrument after the SeaWiFS critical design review.

Both broadband filters transmit in the blue-green region
of the visible spectrum and reflect in the red.

The transmission curve for the BG39 filter is shown in

Fig. 10 (top). This filter was added to the focal plane as-

sembly for bands 1 and 2 to provide additional suppression

of transmission spikes from the interference filters in the

red. These spikes do not present a significant problem for
the 412 and 443 nm bands on orbit. The broadband filter
was added to aid in the radiometric calibration of bands 1

and 2 in the laboratory.

The light source used for the radiometric calibration of

the instrument does not have the same spectral shape as
the sun. The sun, with the approximate spectral shape of

a 5,900K blackbody, has a peak flux output at a wave-

length of 491nm. The integrating sphere in the SBRC

laboratory has the spectral shape of a 2,850 K blackbody
and a maximum light output at 1,017 nm. This is true of

all integrating spheres since all use tungsten lamps as light

sources. Blackbody radiation is described in Section 9.8.

In relative terms, the laboratory light source produces

considerably more light in the red portion of the spectrum
than in the blue-green. In relative terms, this excess of

red light from the integrating sphere accentuates the out-

of-band transmission spikes from the interference filters.

When using the integrating sphere, the so-called red leak

for band 1 (412 nm) is about 30% of the transmitted light
through the filter's pass band.
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Thesun(ora5,900K blackbody)producesmuchmore
radianceflux in theblue-greenregionthanin thered.For
sunlight,theredleak through the 412 nm interference filter
is less than 1%. As a result, the BG39 filter has little use

to SeaWiFS on orbit. The filter has been of great utility

in the laboratory measurements which are required before

the instrument is placed in orbit.
The BG26 filter has been added to the instrument to

reduce the amount of light in the two longest SeaWiFS

bands (765 and 865 nm). This reduced optical signal has
helped the stray light characteristics for these bands. Al-

though the BG26 filter has not been added to change spec-
tral shapes in the instrument, its spectral effects must still
be considered.

The transmission spectrum for the BG26 filter is given

in Fig. 10 (bottom). Both colored glass filters have been

measured in the laboratory at SBRC. The measurements
have been made at several wavelengths. Values between

these wavelengths have been calculated by linear interpo-

lation. With its position at the entrance to the focal plane

assembly, this filter affects the transmission of all eight Sea-
WiFS bands. Figure 10 (bottom), however, shows that the

curve has very little spectral shape over the pass bands of
the eight SeaWiFS interference filters. The BG26 broad-

band filter is spectrally flat over SeaWiFS band 1 and adds

next to nothing to its spectral shapes.

9.5 Photodiode Responsivity

The responsivity of the photodiode used in SeaWiFS,

expressed in terms of mA of current out per mW of radiant
flux in, has been measured at SBRC. These measurements

are made for one of the diodes in the production batch

used for the instrument. SeaWiFS employs 32 photodi-

odes, and it is impractical to measure the spectral response
of each. As a result, there has been only one measurement

at SBRC. The diode's response curve shows little structure

over the 10 and 20 nm half-widths of the eight SeaWiFS

bands (Fig. 11, top).

There is, however, structure in Fig. 11 (top) around
the 412 and 443nm wavelengths. This results from noise
in the measurement at SBRC and not from the wave-

length dependence of the efficiency of the photodiode. The

SBRC measurements of the spectral response curve were

performed using the same equipment as the system level

test of the wavelength dependence from SeaWiFS. Light
from a monochromator was used to illuminate a NIST cal-

ibrated photodiode and then to illuminate the SeaWiFS

diode. The response curve in Fig. 11 (top) was calculated
using these data and the NIST calibration curve for the

reference photodiode. The monochromator used a tung-
sten lamp for its source, and the measurements had low

light levels in the blue wavelengths and increased noise at

wavelengths below 500 nm.

This artificial structure at the blue end of Fig. 11 (top)
was removed using a second order polynomial fit of the

data from 406-490 nm. These fitted results replace the lab-

oratory measurements over wavelengths from 380-490 nm.
The measured values and the fitted curve are shown in

Fig. 11 (bottom). The extrapolation of the fitted curve to
380 nm removes unwarranted structure in the out-of-band

response of the bands below 400 nm, although the extrapo-
lation creates some additional error in the instrument level

spectral response curves below 400nm. This error, how-

ever, is a small part of values that are already close to
zero. The spectral response calculations in this technical
memorandum use the fitted curve from 380-490 nm.

Elements of the SeaWiFS optical train, other than the

photodiodes, transmit or reflect a fraction of the input ra-

diance. In the calculation of the optical throughput of the

instrument, they are dimensionless. It is the photodiodes
that convert mW of radiant flux into mA of electrical cur-

rent. The diodes integrate the radiant flux over the wave-

length range where the optics have a non-zero response.

For each channel, the electronics transform this current

into voltage, amplify the voltage, and change the voltage
into counts with an ADC. This process gives the funda-

mental radiometric conversion factor for SeaWiFS, mW of

radiance flux per count.

9.6 Detector-to-Detector Differences

For the ocean color instrument, the performance spec-

ifications address spectral uniformity for an instrument

with multiple detectors. SeaWiFS has four detectors per

band which are cut from a single piece of silicon sub-

strate and lie in a single line. The individual detectors are

0.025 cm square with a 0.005 cm saw cut in the substrate

between them. The total length of the detector array is
0.117cm. All four detectors lie under the same narrow-

band interference filter. Assuming a reasonable uniformity

in the silicon substrate and in the interference filters, the
spectral responses for the four detector elements in each

band are assumed to be essentially identical. The response

curve for each band is dominated by the band's interfer-
ence filter, with the photodiode adding little to the band's

spectral response. The specifications call for the central

wavelength of each channel to be within +0.5 nm of the

central wavelength of all four channels. The prelaunch ac-

ceptance report (Barnes et al. 1994) shows the SeaWiFS

instrument to meet this specification.

9.7 Narrowband Filters

The spectral shape for each SeaWiFS band is domi-

nated by the band's narrowband interference filter. The

response of this filter gives the principal definition of the

following for each SeaWiFS band: the center wavelength;
the band edges, from the full width at half maximum; and

the extended band edges, from the 1% power points. The
transmission curve for the 412 nm narrowband interference

filter from 380-580nm is shown in Fig. 12 (top). This
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Fig. 10. Transmission curves for the SeaWiFS color glass filters. The top panel shows the transmission curve

for broadband filter BG39. This filter forms a part of the optical train for bands 1 and 2 (412 and 443 nm).

The bottom panel shows the transmission curve for broadband filter BG26. This filter is part of the optical
train for all eight SeaWiFS bands.
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accentuates the out-of-band response of the filter.

curve, with its linear ordinate, shows the features and the

shape of the pass band of the filter. Figure 12 (top) also
shows the out-of-band transmission leak near 500 nm.

Figure 12 (bottom) shows the response of the filter from

380-1,150 nm. The curve for the same filter is also given in

Fig. 13 with a logarithmic ordinate. Figure 13 shows the
large and the small out-of-band components of the filter.

Some of these peaks are substantial. The SeaWiFS optical
train for bands 1 and 2, however, contains dichroics and a

BG39 broadband color glass filter to reduce these out-of-

band components.
The SeaWiFS radiometer uses a scrambler to remove

any polarization that may be present in the input radiance

to the instrument, although polarization is not a consider-
ation in the measurement of the interference filters. The

lenses between the dichroics and the focal plane assemblies

(Fig. 3) convert the collimated light into converging light

with a relative aperture (f-number) of 2. For this f-number,
the distance between the lenses and the focal plane assem-

blies is twice the diameter of the opening in the lens as-
semblies. This converging angle has been included in the
measurements of the narrowband interference filters in the

laboratory.

The vertical scale is given in logarithmic units. This

The measurements of the SeaWiFS interference filters

at SBRC have been made with laboratory equipment hav-
ing a resolution of 0.0001 transmission units. There are
data points in the test results where the transmission of

the filters is less than that threshold. In the laboratory

results, these points have been given transmission values

of zero. For this report, the zero values have been replaced
with one-half of the resolution of the measurements, i.e.,

at 0.00005 transmission units. This allows for plots of the
results on a logarithmic axis.

For each SeaWiFS band, the dichroics substantially re-

duce the out-of-band transmission spikes. Figure 14 (top)
shows the net result for the interference filter for band 1

(from Fig. 12, top) combined with the response curves for

the band's two dichroics (from Figure 9, top and bottom).
This figure uses a logarithmic ordinate to emphasize the

characteristics outside of the filter's pass band. As shown

in Fig. 14 (top), the out-of-band response is reduced sig-
nificantly when compared with Fig. 13.

A BG39 filter has been added to the instrument to fur-

ther reduce the out-of-band response for the 412 nm chan-

nel. The inclusion of the BG26 and BG39 filter responses

to Fig. 14 (top) give the result in Fig. 14 (bottom). The

29



SeaWiFSPrelaunchRadiometricCalibrationandSpectralCharacterization

out-of-bandresponseof band 1 above 600 nm is more than

four orders of magnitude below the transmission peak at

412nm.

Figure 15 shows the addition of the mirror and the

photodiode responses to Fig. 14 (bottom). Figure 15 gives

the spectral response of SeaWiFS band 1 (412nm) to a

spectrally fiat light source. At each wavelength from 380-

1,150nm, this theoretical source provides a radiance of 1
mW cm -2 sr -1 #m -1. At each wavelength, the photodiode

converts this radiance into picoamperes of current. The in-

tegral of this current over wavelength gives the total out-

put of the photodiode, in nanoamperes, for such a source.
Figure 15 provides an intermediate step in the spectral re-

sponse calculations, since SeaWiFS views sources that have

specific spectral shapes, both in the laboratory and on or-
bit. In addition, Fig. 15 marks the point in the spectral
calculations where the measurements of the band edges,

i.e., 50% power points, and extended band edges, i.e., 1%

power points, are made to show compliance with the Sea-

WiFS specifications.
The inclusion of the photodiode and the mirror respon-

ses to the data set in Fig. 15 has the effect of increasing

the out-of-band response for band I relative to the response

for the data sets in Fig. 14 (top and bottom). This can be

seen in the relative size of the peak near 650 nm in Fig. 15

(bottom). The diode and mirror responses have enhanced
this peak in Fig. 15 (bottom) between four and five times

relative to its size in Fig. 14 (top and bottom). The 650 nm

peak lies below the resolution of Fig. 14 (bottom), and is
four orders of magnitude below the transmission peak in

Fig. 15 (bottom).

9.8 Blackbody Radiation

For an idealized blackbody radiator, the radiance can

be given as a function of temperature and wavelength. For

the purposes of calculations, the equation can be used in

the following form (Wyatt 1978):

1.191066 x l0 s

L(A) = _5(el.43883x 104/)_T _ 1)'
(14)

where A is the wavelength, in #m; T is the temperature,

in kelvins; and L is the radiance, in Wm -2 sr -1 _m.

The radiance values from (14) can be converted directly
into units of mWcm-2 sr -1 #m -1, the units for SeaWiFS

measurements. The radiance values from this equation in-

crease at all wavelengths with increasing temperature, and

the peak of the curve shifts toward shorter wavelengths
with increasing temperature. These two effects are signifi-

cant, since the laboratory measurements for SeaWiFS are

made with light sources that use tungsten lamps having

blackbody temperatures near 2,850K, while the sun ap-

proximates a 5,900K source for wavelengths in the blue

and the visible (Allen 1973 and Warneck 1988). For this

reason, the SeaWiFS performance specifications require

that the out-of-band response for the SeaWiFS bands be

determined for a source with the spectral shape equivalent

to the sun.

There are xenon arcs and other laboratory sources that

mimic the wavelength dependent shape of the blackbody

shape of the sun better than tungsten lamps. These lab-

oratory sources do not have the inherent stability of in-

tegrating spheres using sets of tungsten lamps. In addi-

tion, these other sources cannot be easily adjusted over

the range of intensities necessary for the calibration of
the instrument. As a result, laboratory radiometric mea-

surements of the SeaWiFS bands have been made using

sources with tungsten lamps and then calculated for a

solar-equivalent spectral shape.

A 5,900 K blackbody closely approximates the spectral

shape for the maximum anticipated radiances from the

Earth found in the SeaWiFS performance specifications

(Barnes et al. 1994). When the 5,900 K curve is normalized
to the eight cloud radiances in the specifications (Fig. 16),
the relative standard deviation of the curve values from

the cloud radiances is 5%, with the values from the curve

falling low in bands 1, 2, and 6. A fine tuning of the tem-

perature of the solar equivalent blackbody temperature to

other temperatures near 5,900K will have no significant

effect on the spectral response calculations for SeaWiFS.

Figure 17 (top) shows the response of SeaWiFS band 1,

412 nm, to a source with the shape of a 5,900 K blackbody.

The flux from the blackbody curve has been normalized at

412 nm to the typical saturation radiance for band 1 from

the SeaWiFS performance specifications, 13.63 mWcm -2

sr -1 #m -1 (Barnes et al. 1994). Figure 17 (bottom) shows

the same response but to a 2,850 K blackbody normalized
at 412 nm.

In addition, the vertical scale for Fig. 17 (bottom) is

15 times greater than that for Fig. 17 (top). The radia-

tion curve for the 2,850K blackbody peaks at 1,017nm,

far to the red of the normalization wavelength, 412 nm.

The normalized 5,900 K curve in Fig. 17 (top) would ap-

pear as a small hump in Fig. 17 (bottom) The illumination
of SeaWiFS band 1 at the SeaWiFS saturation radiance

level with the SBRC integrating sphere also illuminates

this band with considerable light in the red region. At

1,000nm, the illumination is about 16 times greater than
the illumination at the band's center wavelength. This

is a factor that must be considered in the transfer of the

SeaWiFS radiometric calibration in the laboratory to the

calibration on orbit.

The system response curves in Fig. 15 are given for a

spectrally fiat source with a radiance of 1 mWcm -2 sr -1

mum -1. The two blackbody radiance curves in Fig. 17
use the same units. This allows a direct calculation of the

response of SeaWiFS band 1 to 2,850 K and 5,900 K sources

that have a radiance of 13.63mW at 412 nm. Figure 18

shows the differences between the output of SeaWiFS band

1 when exposed to 2,850 K and 5,900 K blackbody sources.
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shows the combined curve for the interference filter, dichroics, and broadband filters. The out-of-band response
above 600 nm has been further reduced by two orders of magnitude.
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Fig. 16. Radiance curve for a 5,900K blackbody normalized to the cloud radiances from the SeaWiFS

performance specifications.

The spectral response characteristics for the other seven
SeaWiFS bands are calculated in a manner that is the

same as the method that has been described here for band

1. The spectral responses of all eight bands to a 5,900K

source are shown below (Figs. 19-24). The integrated out-

put of the instrument for the 2,850K and 5,900K black-

body temperatures must be used in ratios to convert the

laboratory measured radiance calibration for SeaWiFS to

the in-flight calibration. For SeaWiFS band 1, the labora-

tory measurements will give a slightly greater number of

counts per unit radiance than will the measurements on or-

bit. The results of these calculations for all eight SeaWiFS

bands are given below.

The performance specifications for SeaWiFS allow out-

of-band responses that are less than 5% of those within

the extended band edges, which are defined by the 1%

power points. These out-of-band response specifications

cover the response of the instrument to a radiance source

that mimics the sun. Calculations for all eight bands, using

the 5,900K blackbody, are also given in Section 12. In

addition, the band edges and extended band edges for all
of the SeaWiFS bands are tabulated in Section 11. These

values are calculated for a spectrally flat light source, a
5,900 K blackbody, and for a 2,850 K source.

9.9 Absolute Throughput

Using additional information, including the collection
aperture for the instrument and the instrument's field of

view, SBRC has calculated the absolute throughput for the

eight SeaWiFS bands. Using these data and the output of
the instrument when illuminated by an integrating sphere,

SBRC has calculated the sphere radiance based ultimately
on the piece part curves. The worst comparison between

the calculated and measured sphere radiances was for band
1 (412 nm). For this band, the output of the instrument
was about 50% greater than expected in the calculations.

Absolute instrument throughput is not investigated here.

9.10 Spectral Response Curves

In previous sections, the spectral responses of SeaWiFS

band 1 for three light sources have been given: spectrally
flat, 5,900K blackbody, and 2,850K blackbody. The ra-
diances from the two blackbody light sources were nor-

malized to the expected saturation radiance for band 1 at
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the band's nominal center wavelength, 412nm. For the

overview of the responses of the eight SeaWiFS bands in

this section, the response of the eight bands to a 5,900 K

blackbody source, a source that approximates the solar

spectrum will be shown. For each of the bands, the 5,900 K

radiance has been normalized to the expected saturation

radiance at that band's nominal central wavelength.

Figure 19 (top) gives the in-band responses for the 412

and 443 nm channels, and Fig. 21 gives their out-of-band

responses. The plots in Fig. 21 show that the interference

filters for the two bands exhibit similarities, especially evi-
dent in their out-of-band transmittances near 500-560 nm.

The similarities between the filters seem reasonable, since

their peak transmittances are only 30 nm apart. For bands

1 and 2, the components in the optical train---other than

the interference filters--are the same, so the similarities in

Fig. 21 come from the filters, themselves.

For band 1, and to a lesser extent for band 2, there has

been a reduction in the blue side of the in-band response

of the filter. This can be seen most easily in a comparison

of the size of the left side transmission peak in the band

1 interference filter near 406 nm in Fig. 12 (top) with the

corresponding system response peak in Fig. 15 (top) Both

the mirror reflectances (Fig. 8, bottom) and the photodi-

ode output (Fig. 11, top) act to trim the blue side of the

output from the interference filter for band 1. Combined

with the shape of the 5,900K blackbody response near

412nm (Fig. 17, top), these elements are responsible for

the reduction in the portion of the peak nearest the blue

end of the spectrum of band 1 in Fig. 19 (top). To a lesser

extent, these elements are also responsible for the reduced

blue side peak in the response of band 2. For both bands 1

and 2, the system responses are about one-half nanometer

more to the red side than the responses of the interference
filters.

The in-band responses for SeaWiFS bands 3 and 4 are

shown in Fig. 19 (bottom), and the out-of-band responses

are shown in Fig. 22. As was seen for bands 1 and 2, the

out-of-band responses for bands 3 and 4 show marked sim-

ilarities (Fig. 22). This is particularly true for the trans-
mission curves for the 490 and 510nm interference filters

(not shown) above 800 nm. In this region, the interference
filters transmit 70% to 80% of the incident radiation. How-

ever, the two dichroics in the optical path for these bands

effectively remove most of this flux before it reaches the
filters.

Figure 20 (top) gives the in-band responses for the 555

and 670 nm channels, and Fig. 23 gives their out-of-band

responses. Figure 20 (top) shows an out-of-band leak be-

tween 690 and 700 nm. This peak and a second out-of-band

peak around 450 nm are more clearly seen in Fig. 23. In rel-

ative terms, the out-of-band response of band 5 is just over
twice that for band 6. The calculations of the out-of-band

responses for the eight SeaWiFS bands are summarized in
Section 12.0.

The in-band responses for SeaWiFS bands 7 and 8 are

shown in Fig. 20 (bottom), and the out-of-band responses
are shown in Fig. 24. These bands have been designed

with twice the spectral widths of the other SeaWiFS bands.

The small scale structure, i.e., the lack of smoothness in

the peak of the curve for band 7 (765 nm) is an artifact of

the measurement of the band's interference filter by SBRC.

Interference filters of the type used in SeaWiFS exhibit a

much smoother spectral response. Band 8 (865 nm) shows

the greatest out-of-band leakage for the SeaWiFS set, both
in absolute and relative terms. However, its 3.7% out-of-

band response is well within the 5% maximum value in the

SeaWiFS performance specifications.

Figures 21-24 shows the output of the photodiodes for

each SeaWiFS band in picoamperes per nanometer (from

380-1,150nm). The actual current from the photodiode

is the sum of the band output over the entire wavelength

range. The photodiode serves to integrate the instrument's

spectral response. The integrals, i.e., summations, of the

spectral responses of the eight SeaWiFS bands are given

in Table 12. These summations are given for the respon-

ses to a 5,900K blackbody (Figs. 21-24) and to a 2,850K

blackbody (not shown). In the calculations for each band,

both sources give the saturation radiance for the band at

the band's nominal center wavelength (for band 1, 13.63

mW at 412nm; for band 2, 13.25 mW at 443nm; and so

forth).

Table 12 also provides factors which allow conversion

between the 2,850K light source used in the laboratory

and a 5,900K source that mimics the sun. For band 1

(Table 12), the output of the photodiode in response to

a 5,900K source is almost 4% less than the output in re-

sponse to a 2,850 K source. Correction factors, similar to

the ones in Table 12, must be used in the transfer of the

laboratory radiometric calibrations to orbit.

The out-of-band responses for the eight SeaWiFS bands

are part of the instrument's radiometric calibration. In

that calibration, the instrument views a broad area of

known radiance, and records the output from the bands
in counts. The counts from each band include the out-

of-band contributions which are functions of the spectral

shape of the source that is measured. The SeaWiFS lab-

oratory calibration has the out-of-band correction for a
2,850K source factored into its results. If the instrument

measures a source with that spectral shape, those measure-

ments automatically contain the appropriate out-of-band
corrections.

The prelaunch calibration equations for SeaWiFS con-

tain correction terms that convert the out-of-band respon-

ses from those for a 2,850K source to those for a 5,900K

source. As a result, the SeaWiFS calibration equations

now have the out-of-band correction for a 5,900 K source

factored into them. The 5,900K spectral shape dupli-

cates the spectral shape for SeaWiFS ocean measurements

closely. The errors that arise from the use of the 5,900 K
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Table12. IntegratedinstrumentresponsesfortheeightSeaWiFSbands.Theresultsaregivenfor responsesin
nanoamperesto 2,850K and5,900K blackbodyradiancesources.Theradiancesfortheblackbodysourcesare
normalizedto theexpectedsaturationradianceforeachbandat thenominalcenterwavelengthforeachband.
Theconversionfactorgivesafractionalmultipliertoconvertthelaboratoryinstrumentresponseusinga2,850K
blackbodyto theresponseonorbit usinga 5,900K source.Theseresultsarecalculatedoverthewavelength
rangefrom380-1,150nm.

Band Response to

2,850 K Source

[nA]
2.275
3.493

4.424

4.624

3.749

2.069

2.875

2.249

Response to

5,900K Source

[nA]

Conversion

Factor

2.190

3.435

4.336

4.613

3.717
2.092

2.859

2.274

0.963

0.983

0.980

0.998

0.991

1.011
0.995

1.011

Normalization

Wavelength

[nm]

412

443

490

510

555

670

765

865

Normalization

Radiance

[mWcm -2 sr-1 #m -1]

13.63

13.25
10.50

9.08

7.44

4.20

3.00

2.13

out-of-band corrections for ocean measurements are esti-

mated to be small, or a few tenths of a percent. If an alter-

nate out-of-band correction is to be used, then the 5,900 K
correction must be removed from the measurement results

and a new out-of-band correction inserted in its place.

10. SYSTEM LEVEL RESPONSE

System level measurements of the spectral response of

SeaWiFS were made using a 0.5 m monochromator, illu-

minated with a 100W halogen lamp, as a light source.
The slits on the monochromator were adjusted to give a

spectral resolution for the source (full width at half max-

imum) of 0.9 nm at 546 nm. The wavelength accuracy of

the monochromator was checked using five emission lines,
in first and second order, from a mercury lamp.

The relative output energy from the monochromator

was measured using a photodiode with a known quantum
efficiency, i.e., with a known number of mA of current out

per mW of radiant flux in. The output of this photodi-
ode, after amplification and conversion to mW of radiant

energy, is shown in Fig. 25. No effort was made to deter-

mine the complete set of geometric (goniometric) factors
in the illumination of the calibrated photodiode, such as

the area of illumination of the diode and the solid angle
of the illuminating light. Figure 25 gives relative values,

only. Since the comparisons in this section are of spectral
responses normalized to 100%, the calculation of absolute

radiances is not necessary.

In previous sections, the calculated piece part results

for the SeaWiFS bands were convolved with the spectral
shapes of blackbody sources to give the responses of the

instrument to laboratory and solar spectra. For the com-

parisons in this section, the shape of the halogen lamp and
monochromator light source must be removed from the

system level measurements of the SeaWiFS bands. This is

done by dividing the output of the bands by the values in

Fig. 25 and normalizing the result to 100%. This gives the
system level response to a light source that is spectrally

flat over the wavelength range from 380-1,100 nm. For the

piece part measurements, the responses to a spectrally flat
source have also been calculated (Fig. 15).

Data from the SeaWiFS instrument in the system re-
sponse tests has been taken from the output of the pream-

plifiers for each band. These voltages have been ampli-
fied with a lock-in amplifier and digitized with a 12 bit

ADC. This modification to data acquisition gives the tests

a sensitivity to low light levels that is orders of magnitude
better than the resolution of the standard digital output

from the sensor. Piece part calculations, however, still give

results that are one to two orders of magnitude more sensi-

tive than the minimum detectable limit of the system level
measurements.

The piece part and the system level spectral response
curves for the eight SeaWiFS bands are shown in Figs. 26
and 27. The system level measurements have been made

over 60 nm wavelength ranges, centered for each band's

nominal pass band. In Figs. 26 and 27, the piece part
wavelength ranges have been trimmed to the same ranges

as the system level results. For this reason, the spectral
curves for bands 7 and 8 float above the horizontal axis

in Fig. 27 (bottom). The system level measurements for
bands 7 and 8 do not come down to the abscissa.

The band edge values from the piece part and system

level measurements are given in the next section. All of the
band edges, which give the full width at half maximum for
the spectral response, are within 1 nm for the two sets of

measurements here--with the exception of two, the lower

band edges for band 3 and band 7 (Fig. 26, bottom, and

Fig. 27, bottom). In all cases, however, each band edge
measurement is within the performance specifications for
the instrument.

The shapes of the peaks for the two measurement sets

show differences. Requirements for these shapes are not
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part of the SeaWiFS specifications. Both the piece part
and the system level results are within the requirements of

the specifications, and the measurement sets are final and
will not be repeated. The most reasonable explanation for

the differences is that the system level measurements have

been made with the flight filters, and the piece part mea-

surements have been made with filters from flight spares
that have come from the same lot as the flight parts.

During the thermal vacuum testing of SeaWiFS, in the

spring of 1993, the focal plane assembly for bands 5 and 6
was replaced due to an electrical problem. When the in-
terference filter for band 5 was removed from the old focal

plane assembly, it was chipped. A replacement filter was

placed in the new assembly. The system level measure-
ments for bands 5 and 6 were not repeated after thermal

vacuum testing. As a result, the system level measure-

ments for band 5 no longer represent the actual flight unit
but represent a band with an interference filter that has

come from the same lot as the flight part, like the piece
part measurements.

For band 1 (Fig. 26, top), the shape of the system level
spectral response resembles the transmission curve for the

412nm interference filter (Fig. 12, top). It seems likely

that the model for the mirror reflectances (Fig. 8, bottom)
shows too sharp a reduction in reflectance at the lowest

wavelengths. Such an effect would remove too much of the

blue side of the piece part results in Fig. 26 (top).
There are differences between the piece part and the

system level response curves. The piece part results are
considered prime, and the system level measurements are

considered backup checks. The differences between the two
sets of measurements are sufficiently small, and the system

level results verify the piece part results. The compari-

son of the out-of-band measurements for the eight bands
are given in Figs. 28-31. The comparisons are given for

the responses to a spectrally flat radiance source. This is
the arrangement used to calculate the band edges to check

agreement with the SeaWiFS performance specifications.

Figures 28-31 show the limited dynamic range for the sys-

tem level measurements. To improve the sensitivity of the
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flat source as measured at the system level and as calculated from piece part measurements. The responses

are normalized to 100%. The top panel shows Bands 1 and 2 (412 and 443 nm). The bottom panel shows

Bands 3 and 4 (490 and 510rim).
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flat source as measured at the system level and as calculated from piece part measurements. The responses

are normalized to 100%. The top panel shows Bands 5 and 6 (555 and 670 nm). The bottom panel shows

Bands 7 and 8 (765 and 865 nm).
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Fig. 28. Out-of-band measurements for the SeaWiFS bands. The curves show the response of the bands to

a spectrally flat source as measured at the system level and as calculated from piece part measurements. The

responses are normalized to 100%. The top panel shows Band 1 (412 nm). The bottom panel shows Band 2

(443 nm).
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Fig. 30. Out-of-band measurements for the SeaWiFS bands. The curves show the response of the bands to

a spectrally flat source as measured at the system level and as calculated from piece part measurements. The

responses are normalized to 100%. The top panel shows Band 5 (555 nm). The bottom panel shows Band 6

(670 nm).
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system measurements, the lock-in amplifier was set to sat-
urate at about 10% of the full-scale output for each band.

The lower limit for the system level measurements, for in-

stance, the output from 600-1,100 nm in Fig. 28 (bottom),
has been set at one count in these figures. Where the ac-

tual output of the lock-in amplifier was zero or negative in

the measurements, they have been set to one count in this

presentation. One count sets the resolution limit for the

system level measurements.

Above the resolution limit for the system level measure-

ments, there are structures in the piece part results that

are not seen in the output from the lock-in amplifier. In
general, these differences are at levels that are four to five

orders of magnitude below the peak transmission of the

bands. Again, the differences in the two sets of measure-

ments are sufficiently small that the system level results
verify the piece part results.

11. BAND EDGE WAVELENGTHS

The band edge measurements are given for the wave-
lengths at which the instrument response equals half that

at the peak. The extended band edges give the points at

which the output is 1% of the peak. The results (Table 13)
come from the data sets that make up the sets of figures in

this memorandum. The results from the piece part calcu-

lations are given for three source spectral shapes which are

a spectrally flat source, a 5,900 K blackbody, and a 2,850 K

blackbody.

Table 13 includes the band edge calculations for the

piece part measurement of each interference filter, plus the

values from the system level measurements. For the system
level measurements, the spectral shape of the monochro-

mator light source has been removed. Thus, the system
level measurements are equivalent to the measurement of

piece part values using a spectrally flat light source. Since
the data in the measurement sets are tabulated at one

nanometer intervals, the values in Table 13 have been ob-

tained by linear interpolation.

the response between the extended band edges. The in-

strument is within these specifications for all eight bands.

13. SUMMARY

There are aspects to the SeaWiFS calibration equations

that are specific to the spacecraft instrument. For example,
there are small differences in the output of SeaWiFS from

side to side of the half angle mirror. Most ground based
instruments do not scan in the same manner as SeaWiFS.

In addition, SeaWiFS uses bilinear gains to allow high sen-

sitivity measurements of ocean-leaving radiances and low
sensitivity measurements of radiances from clouds, which

are much brighter than the ocean (Section 3.0).

There are, however, many calibration factors that are

common to SeaWiFS and to other radiometers. The ap-

plication of these factors to the SeaWiFS calibration equa-
tions has been presented both for users of the data set

from the satellite instrument and for researchers making
ground-based radiance measurements in support of Sea-
WiFS. Ground based radiometric measurements must ac-

count for many of these calibration factors.

In particular, there has been a detailed discussion of the

spectral responses of the eight SeaWiFS bands. The dis-

cussions have been developed to show the integrated spec-

tral responses within SeaWiFS as functions of the shape
of the radiant source measured by the instrument (Section

9.10). These out-of-band responses of the bands contribute

to the laboratory calibration of SeaWiFS. For the instru-
ment's calibration coefficients presented here, the out-of-

band response for the SBRC integrating sphere has been

replaced with the out-of-band response for a source with

the spectral distribution identical to the solar flux (Sec-

tions 7.2 and 7.3). Such spectral considerations may also
be important for experimenters making ground based ra-

diance measurements in support of SeaWiFS.

12. OUT-OF-BAND RESPONSE

The values in Table 14 are based on the measurements

shown in Figs. 21-24. The locations of the upper and lower
extended band edges come from Table 13. All of the val-

ues in Table 14 come from the piece part calculations for AD

the SeaWiFS bands as illuminated by a 5,900 K blackbody. ADC

This is the arrangement set forth in the SeaWiFS perfor- CZCS

mance specifications (Barnes et al. 1994). IFOV
Figures 21 24 give the response of the instrument in

picoamperes per nanometer. Table 14 gives the following NASA
sums of these responses over three wavelength ranges: from NIST

380 nm to the lower extended band edge; from the lower OSC

to the upper extended band edge; and from the upper ex- SBRC
tended band edge to 1,150 nm. The SeaWiFS specifications SeaWiFS
require that out-of-band responses be no more than 5% of SNR
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Table 13. Bandedges(halfmaximumwavelengths)andextendedbandedges(1%wavelengths)for SeaWiFSbands
1-4. Thecenterwavelengthis calculatedfromthe upperandlowerbandedges.Resultsaregivenfor threelight
sources:spectrallyfiat, 5,900K blackbody,and2,850K blackbody.Resultsarealsogivenfor the interferencefilter
only,andfor thesystemlevelmeasurementusingthemonochromatorasa lightsource.

Band Nominal

Band Edges

Into]
1 402-422

2 433-453

3 480-500

4 500-520

5 545-565

6 660-680

7 745-785

8 845-885

Lower Extended Lower Center Upper Upper Extended

Band Edge Band Edge Wavelength Band Edge Band Edge

[nm] [nm] Into] [nm] [nm]
394.9 403.1 413.2 423.3 433.4

395.1 403.3 413.3 423.4 433.6
395.9 404.5 414.1 423.7 434.8

393.6 402.4 412.6 422.7 432.3

393.8 402.3 413.0 423.7 433.8

424.0 434.1 443.9 453.7 463.7

424.1 434.2 444.0 453.8 463.7

424.8 435.1 444.6 454.1 464.3

423.3 433.5 443.5 453.5 464.6
422.3 433.6 444.1 454.6 463.8

470.7 480.8 491.1 501.4 511.8
470.7 480.8 491.1 501.4 511.8

471.3 481.5 491.6 501.6 512.3

470.1 480.5 490.8 501.2 511.3

468.1 479.1 490.1 501.1 511.7

488.1 498.9 510.1 521.3 530.7

488.1 498.9 510.1 521.2 530.7

488.9 499.4 510.5 521.5 531.1

487.8 498.7 509.9 521.0 532.9
487.2 498.6 510.3 522.0 530.9

536.4 545.5 554.6 563.8 577.3
536.3 545.4 554.6 563.8 577.2

536.9 545.8 554.9 563.9 577.9

536.6 545.5 554.6 563.8 577.1

535.3 544.6 554.2 563.9 577.0

646.8 658.3 668.2 678.2 692.7

646.7 658.3 668.2 678.1 692.5
646.9 658.5 668.4 678.3 692.9

646.8 658.4 668.3 678.2 692.8

646.2 658.8 668.8 678.8 692.2

728.0 744.7 764.9 785.0 814.5

727.6 744.6 764.6 784.6 812.9

728.4 745.1 765.1 785.1 815.6
725.1 744.3 765.0 785.7 814.2

743.3 763.8 784.2

826.7 845.7 866.4 887.0 908.2
826.4 845.5 866.1 886.7 907.5

826.8 845.7 866.5 887.2 908.4

826.5 845.6 866.2 886.9 908.0

845.6 866.4 887.2

Source

Spectrally Flat
5,900 K

2,850 K

Filter Only t

System Level§

Spectrally Flat

5,900K

2,850 K

Filter Onlyt

System Level§

Spectrally Flat
5,900 K

2,850 K

Filter Onlyt

System Level§

Spectrally Flat

5,900 K

2,850 K

Filter Onlyt

System Level§

Spectrally Flat

5,900 K
2,850 K

Filter Onlyt

System Level§

Spectrally Flat

5,900 K

2,850 K

Filter Onlyt

System Level§

Spectrally Flat
5,900 K

2,850 K

Filter Onlyt

System Level§

Spectrally Flat

5,900 K

2,850 K

Filter Onlyt
System Level§

t Calculated from measurements of the narrowband interference filter only.

§ Calculated from system level measurements using a monochromator as the light source.

Outside of the range of the system level measurements.
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Table 14. Calculated out-of-band responses for the eight SeaWiFS bands. The instrument responses are given

as the output of the photodiode in picoamperes. The 5,900K radiances in the calculations are normalized to

the expected saturation radiance for each band at the nominal center wavelength for each band. The upper and

lower extended band edges come from Tables 7 and 8. These results axe calculated over the wavelength range
from 380nm to ll50nm.

Band

1

2

3

4

5

6

7

8

Lower Lower In-Band Upper Upper Out-of-Band

Out-of-Band Extended Response Extended Out-of-Band Response

Response [pA] Band Edge [nm] [pA] Band Edge [nm] Response [pA] [%]

3.38 395.2 2,175.35 433.6 11.77 0.70

9.59 424.1 3,418.80 463.7 1.56 0.33

6.48 470.7 4,301.14 511.7 28.08 0.80

17.32 488.1 4,586.23 530.7 8.96 0.58

39.14 536.6 3,631.84 577.2 46.14 2.35

12.66 646.7 2,071.19 692.2 7.84 0.99

10.17 727.3 2,818.97 813.4 29.58 1.41

66.36 826.4 2,191.97 907.5 15.43 3.73

TDI Time Delay and Integration

A0

B0

C1

C2

Cdark

Cout

Ctemp

ds

G1

G_

G3

G4

gs

ICS

K1

K2

l': a

f<4

K_

K6

K_

L(A)

Lnadir

LS1

LS2

nscan

Pxl

SYMBOLS

Coefficient for linear term in scan modulation cor-

rection equation.

Coefficient for power term in scan modulation cor-

rection equation.

Measured value for the flight diffuser on a given scan

line, in counts.

Measured value of the flight diffuser for the scan line

immediately sequential to the first scan line used to

measure the flight diffuser, i.e., $1, in counts.

Instrument dark restore value, in counts.

Instrument output, in counts.

Temperature sensor output, in counts, represented

by an 8 bit digital word in the SeaStar telemetry.

Detector configuration datum.

Gain setting 1.

Gain setting 2.

Gain setting 3.

Gain setting 4.
Gain selection datum.

Current from the current source diode.

Primary instrument sensitivity factor.
Gain factor.

Temperature dependence of detector output.
Scan modulation correction factor.

Spacecraft analog to digital conversion factor.

Analog-to-digital offset in spacecraft conversion.
Current from the diode at 20°C.

Radiance.

Measured radiance at nadir.

Measured radiance for mirror side 1.

Measured radiance for mirror side 2.

Measured radiance at any pixel in a scan.

Pixel number, i.e., the numerical designation of a

pixel in a scan line.

R1 Multiplier for mirror side 1.

R2 Multiplier for mirror side 2.

RE Effective resistance for the thermistor-resistor pair.

RT Resistance of the thermistor.

T Measured temperature of the focal plane assembly.

TC Approximate focal plane temperature.

Try; Reference temperature for the temperature depen-

dence (20 ° C).

VT Focal plane temperature sensor voltage output.
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