15 research outputs found

    Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models

    Get PDF
    Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the prometastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy

    Adhesion of beta1 integrin to fibronectin regulates CAM-DR phenotype via p21WAF1/cip1 in HL60 Acute Myeloid Leukemia (AML) cells

    No full text
    Aims: Drug resistance is a major obstacle for a successful cancer therapy. Cell adhesion mediated drug resistance (CAM-DR) is a novel type of drug resistance and generated via interaction of cancer cells with the microenvironment. In this study, CAM-DR phenotype was analyzed in HL60 acute myeloid leukemia (AML) cells. Materials and Methods: Fibronectin (FN) adherence of HL60 cells was tested by a colorimetric adhesion assay. Flow cytometry analyses were performed to evaluate doxorubicin-induced apoptosis and to determine cell cycle status. Proliferation rate was evaluated by [ 3H]-thymidine incorporation assay. Western blot and RT-PCR were used for analysis of the factors involved in cell cycle control. Results: Binding of HL60 to FN via ?4?1 and ?5?1 integrins exerted a CAM-DR phenotype, which shows resistance to apoptosis triggered by doxorubicin. FN-adherent HL60 cells accumulated in the G0/G1 phase of cell cycle and stopped proliferation. However, after detachment from FN, cells entered S phase, proliferated, and became sensitive to apoptosis. The analysis of the factors involved in the G0/G1 cell cycle checkpoint showed that CAM-DR phenotype might be regulated mainly by p21 waf/cip. Conclusions: Here we showed that CAM-DR may also represent a reversible drug resistance mechanism that decreases apoptosis and causes growth arrest in AML blasts. © TÜBİTAK

    The comparative effects of gene modulators on thyroid-specific genes and radioiodine uptake

    Get PDF
    The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on the mRNA expressions of the sodium and iodine (Na/I) symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyroid-stimulating hormone receptor (TSH-R), as well as radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 μM of 5-AZA, and 1 μM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid-stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-AZA increased TPO mRNA levels by 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels and made no change on other thyroid-specific genes that were investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important difference in the other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both the cell lines. Furthermore, in short-term treatment, ATRA repressed the NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any changes in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). In our study, we showed an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent. © Mary Ann Liebert, Inc

    Overview of Innovative Mouse Models for Imaging Neuroinflammation

    No full text
    International audienceNeuroinflammation demands a comprehensive appraisal in situ to gain in-depth knowledge on the roles of particular cells and molecules and their potential roles in therapy. Because of the lack of appropriate tools, direct visualization of cells has been poorly investigated up to the present. In this context, reporter mice expressing cell-specific fluorescent proteins, combined with multiphoton microscopy, provide a window into cellular processes in living animals. In addition, the ability to collect multiple fluorescent colors from the same sample makes in vivo microscopy uniquely useful for characterizing many parameters from the same area, supporting powerful correlative analyses. Here, we present an overview of the advantages and limitations of this approach, with the purpose of providing insight into the neuroinflammation field. We also provide a review of existing fluorescent mouse models and describe how these models have been used in studies of neuroinflammation. Finally, the potential for developing advanced genetic tools and imaging resources is discussed. ⃝C 2016 by John Wiley & Sons, Inc
    corecore