17 research outputs found

    Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants

    Get PDF
    © Springer Science+Business Media, LLC, part of Springer Nature 2020. Molecular docking enables comprehensive exploration of interactions between chemical moieties and proteins. Modeling and docking approaches are useful to determine the three-dimensional (3D) structure of experimentally uncrystallized proteins and subsequently their interactions with various inhibitors and activators or peptides. Here, we describe a protocol for carrying out molecular modeling and docking of stem cell peptide CLV3p on plant innate immune receptor FLS2

    Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics:

    Get PDF
    The use of antiretrovirals (ARVs) has drastically improved the life quality and expectancy of HIV patients since their introduction in health care. Several millions are still afflicted worldwide by HIV and ARV resistance is a constant concern for both healthcare practitioners and patients, as while treatment options are finite, the virus constantly adapts via complex mutation patterns to select for resistant strains under the pressure of drug treatment. The HIV protease is a crucial enzyme for viral maturation and has been a game changing drug target since the first application. Due to similarities in protease inhibitor designs, drug cross-resistance is not uncommon across ARVs of the same class

    Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach

    Get PDF
    We present a method for designing artificial receptors capable of binding with high affinity to a chosen target organic molecule. The primary sequence of the peptide is optimized to maximize its binding affinity. Our algorithm builds on a combination of molecular dynamics, semiflexible docking, and replica exchange Monte Carlo and performs simultaneous sampling in sequence and conformational spaces carefully selecting the degree of flexibility in the mutated peptides. The approach is used to design a decapeptide able to bind efavirenz. The calculated binding energy of the designed peptide (approximately -12 kcal/mol) was confirmed experimentally by fluorescence measurements. NMR spectroscopy confirmed the interactions between the peptide and the efavirenz molecule predicted by the algorithm. RI Benedetti, Fabio/G-4787-201
    corecore