2,080 research outputs found

    Focusing RF-on demand by logarithmic frequency-diverse arrays

    Get PDF
    The radiating systems exploiting the frequency diversity of the antennas are powerful architectures, that can have a big impact on wireless power transmission applications, but their characterization is merely theoretical. This paper offers a deep and critical numerical analysis of frequency- diverse arrays and shows the advantages of the family with logarithmic distribution of the frequency for radio-frequency energy focusing goals. For the first time, these systems are analyzed through a Harmonic Balance-based simulation combined with the full-wave description of the array made of eight planar monopoles: the rigorous results confirm the potentialities of these complex radiating systems, in particular show how the time-dependency of the radiating mechanism can be favorably deployed

    Endovascular stenting of the ascending aorta for type A aortic dissections in patients at high risk for open surgery

    Get PDF
    Background: Open repair is the gold standard for type A aortic dissection (TAAD). Endovascular option has been proposed in very limited and selected TAAD patients. We report our experience with endovascular TAAD repair. Methods: Inclusion criteria were: (1) entry tear in the ascending aorta; (2) proximal landing zone of at least 2 cm; (3) distance between entry tear and brachio-cephalic trunk of at least 0.5 cm; (4) no signs of cardiac tamponade or severe aortic regurgitation and (5) no signs of aortic branches ischaemia. Patients with cardiac revascularisation from ascending aorta were excluded. Results: From April 2009 to June 2012, 37 patients with TAAD were admitted to our hospital. As many as 28 underwent surgical repair and 9 were considered at high surgical risk in a multidisciplinary meeting. Four met our inclusion criteria for an endovascular approach. Two of them had previous ascending aortic repair for TAAD and one had aortic valve replacement. Technical success was achieved in 100% of the patients. No mortality was registered during a median follow-up of 15 months (range 4-39 months), no migration of the graft and complete false lumen thrombosis of the ascending aorta in three patients. Conclusion: Endovascular treatment of TAAD is challenging but feasible in a selected subset of patients. Further research remains mandatory. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    monitoring of solid particulate airborne samples from mountain snow in some sites of the alps italy

    Get PDF
    In the last decades, few days a week, several city centres in Italyare closed at vehicular traffic in order to limit the presence of particulate matter, often exceeding the limits set by law [1,2]. The particulate matter have an impact on human health [3,4], in the cultural heritage and natural environment deterioration [5,6]. Many studies have been the carried out in air monitoring in urban areas while the targeted surveys to assess the impact on air quality of snow dispersion for ski activities are rare. Thanks to the Autonomous Province of Trento it has been possible to sample the snowpack in some ski areas inItalyand thanks to stratigraphic profiles it has been possible to observe variations of the chemical composition over time. Natural contribution is strictly related to winds and currents movement, for this reason a deep knowledge of these factors can help in the determination of the prevalent trajectories during the year [7,8]. During a penetrometeric and stratigraphic profile on Presena glacier, the main nivo-meteorological features, air temperature and temperature inside the different layers of the snowpack have been measured. Some snow samples has been collected and analyzed by SEM-EDS, ICP-MS and IC. These qualitative and quantitative analyses allow to obtain chemical and mineralogical composition to define the emitting source

    Acoustic Emission from crumpling paper

    Full text link
    From magnetic systems to the crust of the earth, many physical systems that exibit a multiplicty of metastable states emit pulses with a broad power law distribution in energy. Digital audio recordings reveal that paper being crumpled, a system that can be easily held in hand, is such a system. Crumpling paper both using the traditional hand method and a novel cylindrical geometry uncovered a power law distribution of pulse energies spanning at least two decades: (exponent 1.3 - 1.6) Crumpling initally flat sheets into a compact ball (strong crumpling), we found little or no evidence that the energy distribution varied systematically over time or the size of the sheet. When we applied repetitive small deformations (weak crumpling) to sheets which had been previously folded along a regular grid, we found no systematic dependence on the grid spacing. Our results suggest that the pulse energy depends only weakly on the size of the paper regions responsible for sound production.Comment: 12 pages of text, 9 figures, submitted to Phys. Rev. E, additional information availible at http://www.msc.cornell.edu/~houle/crumpling

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks

    Full text link
    Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al. 2021, 2022), as well as the collision of two sub-critical shocks (Fazzini et al. 2022). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the ''phase-locking effect'' (Fazzini et al. 2022) from such an event. This effect is predicted to significantly boost the energy spectrum of the energized ions compared to a single supercritical collisionless shock. We thus anticipate that the results obtained in the proposed experiment could have a significant impact on our understanding of one type of primary source (acceleration of thermal ions as opposed to secondary acceleration mechanisms of already energetic ions) of ion energization of particles in the Universe

    The new educational project Televascular Games during the Coronavirus Disease 2019 pandemic

    Get PDF
    Objective: To report methodology and first-year results of a new educational project called Televascular Games,” which took place during coronavirus disease 2019 pandemic. Methods: Complex aneurysmal aortic disease was discussed during a 2-hour competition webinar, according to three modalities. (1) Planning case competition (PCC): Two to four preoperative computed tomography angiography (CTA) scans of an already performed selected case were submitted for the competition. CTA scans were uploaded anonymously, without any reference to the center or the surgeon who performed the case. The competitor had to prepare a presentation of how he or she would have diagnosed, sized, planned, treated, and followed up the case, of the medical therapy and of the bail-out maneuvers. (2) Challenging case competition (CCC): The competitor elaborates a presentation of an already treated case concerning an aortic topic and discusses sizing, planning, treatment, possible bail-out maneuvers and obtained results. For the CCC and PCC, the competitors with the best score were preselected to present and discuss their plan during the webinars. (3) Quiz competition: Two to six CTA scans of already performed selected aortic cases were submitted for the competition. A quiz with multiple choice questions was answered by the competitors. The top four competitors were selected for the webinars and then they discussed the cases during the webinar. Finally, at the end of the case discussion, the effective case resolution and follow-up were shown. A final winner was voted via televoting, based on six preestablished criteria. The project was endorsed by different national and international societies. Results: Between October 2020 and December 2021, there were 12 Italian and 1 international webinars with 1695 participants overall (mean, 130; range, 86-177). Competitors were 54 years of age (mean, 27 years; range, 22-38 years). Two editions were CCCs, two quiz competitions, and nine PCCs. The reliability of the interobserver sizing of competitors was κ = 0.43 and κ = 0.62 for the proximal and distal sealing measurements respectively and very good (κ = 0.88-0.95) in the evaluation of orientation of the vessels, presence of angulations, calcifications, and thrombus. The sizing discrepancy resulted in a significant variability of the planning (κ = 0.45). The project ranked 9.6 on a 10-point rating scale by all the participants and competitors. Conclusions: The formula of gaming and collegial discussion of aortic cases herein reported has proved valid and attractive during coronavirus disease 2019 pandemic period. The variability of the results on sizing and planning suggested to confer with a second opinion, especially for less experienced surgeons

    Assessment of digital image correlation measurement errors: methodology and results

    Get PDF
    Optical full-field measurement methods such as Digital Image Correlation (DIC) are increasingly used in the field of experimental mechanics, but they still suffer from a lack of information about their metrological performances. To assess the performance of DIC techniques and give some practical rules for users, a collaborative work has been carried out by the Workgroup “Metrology” of the French CNRS research network 2519 “MCIMS (Mesures de Champs et Identification en Mécanique des Solides / Full-field measurement and identification in solid mechanics, http://www.ifma.fr/lami/gdr2519)”. A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system. The study is based on displacement error assessment from synthetic speckle images. Series of synthetic reference and deformed images with random patterns have been generated, assuming a sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated by several DIC packages based on various formulations and used in the French community. Evaluated displacements are compared with the exact imposed values and errors are statistically analyzed. Results show general trends rather independent of the implementations but strongly correlated with the assumptions of the underlying algorithms. Various error regimes are identified, for which the dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level interpolation or shape functions, is discussed

    Failure Processes in Elastic Fiber Bundles

    Full text link
    The fiber bundle model describes a collection of elastic fibers under load. the fibers fail successively and for each failure, the load distribution among the surviving fibers change. Even though very simple, the model captures the essentials of failure processes in a large number of materials and settings. We present here a review of fiber bundle model with different load redistribution mechanism from the point of view of statistics and statistical physics rather than materials science, with a focus on concepts such as criticality, universality and fluctuations. We discuss the fiber bundle model as a tool for understanding phenomena such as creep, and fatigue, how it is used to describe the behavior of fiber reinforced composites as well as modelling e.g. network failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews of Modern Physic
    corecore