1,999 research outputs found

    Lepton masses, mixings and FCNC in a minimal S_3-invariant extension of the Standard Model

    Full text link
    The mass matrices of the charged leptons and neutrinos, previously derived in a minimal S_3-invariant extension of the Standard Model, were reparametrized in terms of their eigenvalues. We obtained explicit, analytical expressions for all entries in the neutrino mixing matrix, V_PMNS, the neutrino mixing angles and the Majorana phases as functions of the masses of charged leptons and neutrinos in excellent agreement with the latest experimental values. The resulting V_PMNS matrix is very close to the tri-bimaximal form of the neutrino mixing matrix. We also derived explicit analytical expressions for the matrices of the Yukawa couplings and computed the branching ratios of some selected flavour changing neutral current processes as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude.Comment: One paragraph added with comparison to tri-bimaximal mixing, two lines changed in abstract, references added, typographical errors correcte

    Qualche considerazione sull'uso dell'accento grafico in italiano

    Get PDF

    Tailoring palladium nanocontacts by electromigration

    Get PDF
    Electromigration is employed in nanoelectronics for transforming narrow metallic wires into electrodes separated by a few nanometers gap. In this work, we fabricate either nanoconstrictions or nanogap electrodes by performing electromigration in palladium nanowires. The device resistance and the cross section of the initial nanowires allow us to regulate the conditions for transforming deterministically each nanowire in a specific final device. The resulting samples show unique electrical transport characteristics and could be used in multiple nanoelectronics research applications, from ballistic transport to electrodes for single molecular devices.Fil: Arzubiaga, Libe. CIC nanoGUNE; EspañaFil: Golmar, Federico. Instituto Nacional de Tecnología Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Llopis, Roger. CIC nanoGUNE; EspañaFil: Casanova, Félix. CIC nanoGUNE; España. Basque Foundation for Science; EspañaFil: Hueso, Luis E.. CIC nanoGUNE; España. Basque Foundation for Science; Españ

    Nota del nuevo director.

    Get PDF
    Sin resume

    Narrow-escape-time problem: the imperfect trapping case

    Get PDF
    We present a master equation approach to the \emph{narrow escape time} (NET) problem, i.e. the time needed for a particle contained in a confining domain with a single narrow opening, to exit the domain for the first time. We introduce a finite transition probability, ν\nu, at the narrow escape window allowing the study of the imperfect trapping case. Ranging from 0 to \infty, ν\nu allowed the study of both extremes of the trapping process: that of a highly deficient capture, and situations where escape is certain ("perfect trapping" case). We have obtained analytic results for the basic quantity studied in the NET problem, the \emph{mean escape time} (MET), and we have studied its dependence in terms of the transition (desorption) probability over (from) the surface boundary, the confining domain dimensions, and the finite transition probability at the escape window. Particularly we show that the existence of a global minimum in the NET depends on the `imperfection' of the trapping process. In addition to our analytical approach, we have implemented Monte Carlo simulations, finding excellent agreement between the theoretical results and simulations.Comment: 9 page
    corecore