7,762 research outputs found

    Testing predictors of eruptivity using parametric flux emergence simulations

    Get PDF
    Solar flares and coronal mass ejections (CMEs) are among the most energetic events in the solar system, impacting the near-Earth environment. Flare productivity is empirically known to be correlated with the size and complexity of active regions. Several indicators, based on magnetic-field data from active regions, have been tested for flare forecasting in recent years. None of these indicators, or combinations thereof, have yet demonstrated an unambiguous eruption or flare criterion. Furthermore, numerical simulations have been only barely used to test the predictability of these parameters. In this context, we used the 3D parametric MHD numerical simulations of the self-consistent formation of the flux emergence of a twisted flux tube, inducing the formation of stable and unstable magnetic flux ropes of Leake (2013, 2014). We use these numerical simulations to investigate the eruptive signatures observable in various magnetic scalar parameters and provide highlights on data analysis processing. Time series of 2D photospheric-like magnetograms are used from parametric simulations of stable and unstable flux emergence, to compute a list of about 100 different indicators. This list includes parameters previously used for operational forecasting, physical parameters used for the first time, as well as new quantities specifically developed for this purpose. Our results indicate that only parameters measuring the total non-potentiality of active regions associated with magnetic inversion line properties, such as the Falconer parameters LssL_{ss}, WLssWL_{ss}, LsgL_{sg} and WLsgWL_{sg}, as well as the new current integral WLscWL_{sc} and length LscL_{sc} parameters, present a significant ability to distinguish the eruptive cases of the model from the non-eruptive cases, possibly indicating that they are promising flare and eruption predictors.Comment: 46 pages, 16 figures, accepted for publication in Space Weather and Space Climate on June, 8t

    La "filosofĂ­a cristiana" a la luz de la "Aeterni Patris"

    Get PDF

    Long-time properties of MHD turbulence and the role of symmetries

    Full text link
    We investigate long-time properties of three-dimensional MHD turbulence in the absence of forcing and examine in particular the role played by the quadratic invariants of the system and by the symmetries of the initial configurations. We observe that, when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of helicity, do not travel through parameter space over time whereas by perturbing these solutions either explicitly or implicitly using for example single precision for long times, the flows depart from their original behavior and can become either strongly helical, or have a strong alignment between the velocity and the magnetic field. When the symmetries are broken, the flows evolve towards different end states, as predicted by statistical arguments for non-dissipative systems with the addition of an energy minimization principle, as already analyzed in \cite{stribling_90} for random initial conditions using a moderate number of Fourier modes. Furthermore, the alignment properties of these flows, between velocity, vorticity, magnetic potential, induction and current, correspond to the dominance of two main regimes, one helically dominated and one in quasi-equipartition of kinetic and magnetic energy. We also contrast the scaling of the ratio of magnetic energy to kinetic energy as a function of wavenumber to the ratio of eddy turn-over time to Alfv\'en time as a function of wavenumber. We find that the former ratio is constant with an approximate equipartition for scales smaller than the largest scale of the flow whereas the ratio of time scales increases with increasing wavenumber.Comment: 14 pages, 6 figure

    Effect of physical aging on the low-frequency vibrational density of states of a glassy polymer

    Full text link
    The effects of the physical aging on the vibrational density of states (VDOS) of a polymeric glass is studied. The VDOS of a poly(methyl methacrylate) glass at low-energy (<15 meV), was determined from inelastic neutron scattering at low-temperature for two different physical thermodynamical states. One sample was annealed during a long time at temperature lower than Tg, and another was quenched from a temperature higher than Tg. It was found that the VDOS around the boson peak, relatively to the one at higher energy, decreases with the annealing at lower temperature than Tg, i.e., with the physical aging.Comment: To be published in Europhys. Let
    • …
    corecore