21 research outputs found

    Laser produced electromagnetic pulses : Generation, detection and mitigation

    Get PDF
    This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the gHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications

    Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets

    No full text
    To increase the fluence and maximum energy of laser-driven proton beams in view of potential applications such as isochoric heating of dense material or isotope production, it has been proposed to attach a helical coil normally to the rear side of the irradiated target. By driving the target discharge current pulse through the coil, this scheme allows a fraction of the proton beam to be selected in energy and to be focused and further accelerated. The previously published results are extended to higher laser pulse energies and longer coils. This leads to an increased number of guided protons and the generation of several proton bunches. Large scale particle-in-cell simulations with realistic boundary conditions reproduce well the experimental results. A detailed analysis of the numerical simulations and an analytical model demonstrate that the current propagation along a helical wire differs from the one of a linear or folded wire. In a helical wire, the current pulse is subject to velocity dispersion, which results in progressive modification of its spatial profile, and so in proton bunch trapping and focusing
    corecore