17 research outputs found

    In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

    Get PDF
    Background In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. Results We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. Conclusions By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.Peer reviewe

    The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types

    No full text
    Abstract Due to climate change, increased microbial activity in high-latitude soils may lead to higher greenhouse gas (GHG) emissions. However, microbial GHG production and consumption mechanisms in tundra soils are not thoroughly understood. To investigate how the diversity and functional potential of bacterial and archaeal communities vary across vegetation types and soil layers, we analyzed 116 soil metatranscriptomes from 73 sites in the Finnish sub-Arctic. Meadow soils were characterized by higher pH and lower soil organic matter (SOM) and carbon/nitrogen ratio. By contrast, dwarf shrub-dominated ecosystems had higher SOM and lower pH. Although Actinobacteria, Acidobacteria, Alphaproteobacteria and Planctomycetes were dominant in all communities, there were significant differences at the genus level between vegetation types; plant polymer-degrading groups were more active in shrub-dominated soils than in meadows. Given that climate-change scenarios predict the expansion of shrubs at high latitudes, our results indicate that tundra soil microbial communities harbor potential decomposers of increased plant litter, which may affect the rate of carbon turnover in tundra soils. Additionally, transcripts of methanotrophs were detected in the mineral layer of all soils, which may moderate methane fluxes. This study provides new insights into possible shifts in tundra microbial diversity and activity due to climate change

    An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community

    Full text link
    peer reviewedAntarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (o4 μg l–1) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H2S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone
    corecore