108 research outputs found

    Canonical circuit quantization with linear nonreciprocal devices

    Full text link
    Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynamical variables that they couple, and can be used to create chiral information processing networks. We study the systematic inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian descriptions of lumped-element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices. Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in PR

    Quantum Memristors

    Get PDF
    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems

    Quantum Simulator for Transport Phenomena in Fluid Flows

    Get PDF
    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.Comment: 8 pages, 3 figure

    Transition from discrete to continuous time of arrival distribution for a quantum particle

    Full text link
    We show that the Kijowski distribution for time of arrivals in the entire real line is the limiting distribution of the time of arrival distribution in a confining box as its length increases to infinity. The dynamics of the confined time of arrival eigenfunctions is also numerically investigated and demonstrated that the eigenfunctions evolve to have point supports at the arrival point at their respective eigenvalues in the limit of arbitrarilly large confining lengths, giving insight into the ideal physical content of the Kijowsky distribution.Comment: Accepted for publication in Phys. Rev.
    • …
    corecore