1,207 research outputs found

    Rotational spectrum of cis–cis HOONO

    Get PDF
    The pure rotational spectrum of cis-cis peroxynitrous acid, HOONO, has been observed. Over 220 transitions, sampling states up to J(')=67 and K-a(')=31, have been fitted with an rms uncertainty of 48.4 kHz. The experimentally determined rotational constants agree well with ab initio values for the cis-cis conformer, a five-membered ring formed by intramolecular hydrogen bonding. The small, positive inertial defect Delta=0.075667(60) amu A(2) and lack of any observable torsional splittings in the spectrum indicate that cis-cis HOONO exists in a well-defined planar structure at room temperature

    Rotational spectroscopy and dipole moment of cis-cis HOONO and DOONO

    Get PDF
    The rotational spectrum of cis-cis HOONO has been studied over a broad range of frequencies, 13–840 GHz, using pulsed beam Fourier-transform microwave spectroscopy and room-temperature flow cell submillimeter spectroscopy. The rotational spectrum of the deuterated isotopomer, cis-cis DOONO, has been studied over a subset of this range, 84–640 GHz. Improved spectroscopic constants have been determined for HOONO, and the DOONO spectrum is analyzed for the first time. Weak-field Stark effect measurements in the region of 84–110 GHz have been employed to determine the molecular dipole moments of cis-cis HOONO [µa=0.542(8) D,µb=0.918(15) D,µ=1.07(2) D] and DOONO [µa=0.517(9) D,µb=0.930(15) D,µ=1.06(2) D]. The quadrupole coupling tensor in the principal inertial axis system for the 14N nucleus has been determined to be chiaa=1.4907(25) MHz,chibb=–4.5990(59) MHz,chiab=3.17(147) MHz, and chicc=3.1082(59) MHz. Coordinates of the H atom in the center-of-mass frame have been determined with use of the Kraitchman equations, |aH|=0.516 Å and |bH|=1.171 Å. The inertial defects of HOONO and DOONO are consistent with a planar equilibrium structure with significant out-of-plane H atom torsional motion. Comparisons of the present results are made to ab initio calculations

    Natural killer cells and natural killer T cells in Lyme arthritis

    Get PDF
    Introduction: Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity. Methods: We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses. Results: In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-Îł. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-Îł, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003). Conclusions: In patients with antibiotic-responsive arthritis, the high percentage of activated, IFN-Îł-producing CD56bright NK cells in SF and the presence of iNKT cells suggest that these cells still have a role in spirochetal killing late in the illness. In patients with antibiotic-refractory arthritis, the frequencies of IFN-Îł-producing CD56bright and CD56dim NK cells remained high in SF, even after spirochetal killing, suggesting that these cells contribute to excessive inflammation and immune dysregulation in joints, and iNKT cells, which may have immunomodulatory effects, were often absent

    Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars

    Full text link
    We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.Comment: v2: Include comment regarding publication source To appear in the proceedings of "Solar Polarisation 4", held in Boulder, USA, Sept. 200

    Resistless electron beam lithography process for the fabrication of sub-50 nm silicide structures

    Get PDF
    We report on a study of the fabrication of submicron silicide structures with a resistless lithography technique. Several different metals can be used as a basis for producing silicide using this method; in this work, results will be discussed for both platinum and nickel silicide. The feasibility of producing nanostructures using polycrystalline silicon as a base growth layer for metal–oxide– semiconductor, and other device applications have also been demonstrated. Threshold doses for this method for submicron lines (<50 nm) and square areas were obtained in order to establish a framework for the fabrication of more complex devices. Preliminary electrical measurements were carried out which indicate that the resistivity of the silicide is 45 [mu omega] cm, and that the barrier height of the silicide/(high resistivity silicon) interface is 0.56 eV

    Carrier transport properties in the vicinity of single seld-assembled quantum dots determined by low-voltage cathodoluminescence imaging

    Get PDF
    Abstract : We propose a method to investigate the carrier transport properties in the ultrathin wetting layer of a self-assembled quantum dot (QD) structure using low-voltage cathodoluminescence (CL) imaging. Measurements are performed on diluted InAs/InP QDs in order to spatially resolve them on CL images at temperature ranging from 5 to 300 K. The mean ambipolar diffusion length extracted from CL intensity profiles across different isolated bright spots is about 300 nm at 300 K. This gives an ambipolar carrier mobility of about 110 cm2/(V s)110 cm2/(V s). Temperature investigation reveals a maximum diffusion length near 120 K

    Approximate probabilistic verification of hybrid systems

    Full text link
    Hybrid systems whose mode dynamics are governed by non-linear ordinary differential equations (ODEs) are often a natural model for biological processes. However such models are difficult to analyze. To address this, we develop a probabilistic analysis method by approximating the mode transitions as stochastic events. We assume that the probability of making a mode transition is proportional to the measure of the set of pairs of time points and value states at which the mode transition is enabled. To ensure a sound mathematical basis, we impose a natural continuity property on the non-linear ODEs. We also assume that the states of the system are observed at discrete time points but that the mode transitions may take place at any time between two successive discrete time points. This leads to a discrete time Markov chain as a probabilistic approximation of the hybrid system. We then show that for BLTL (bounded linear time temporal logic) specifications the hybrid system meets a specification iff its Markov chain approximation meets the same specification with probability 11. Based on this, we formulate a sequential hypothesis testing procedure for verifying -approximately- that the Markov chain meets a BLTL specification with high probability. Our case studies on cardiac cell dynamics and the circadian rhythm indicate that our scheme can be applied in a number of realistic settings

    Influence of the substrate-induced strain and irradiation disorder on the Peierls transition in TTF-TCNQ microdomains

    Full text link
    The influence of the combined effects of substrate-induced strain, finite size and electron irradiation-induced defects have been studied on individual micron-sized domains of the organic charge transfer compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) by temperature-dependent conductivity and current-voltage measurements. The individual domains have been isolated by focused ion beam etching and electrically contacted by focused ion and electron beam induced deposition of metallic contacts. The temperature-dependent conductivity follows a variable range hopping behavior which shows a crossover of the exponent as the Peierls transition is approached. The low temperature behavior is analyzed within the segmented rod model of Fogler, Teber and Shklowskii, as originally developed for a charge-ordered quasi one-dimensional electron crystal. The results are compared with data obtained on as-grown and electron irradiated epitaxial TTF-TCNQ thin films of the two-domain type
    • …
    corecore