112 research outputs found

    Functional cerebral changes in multiple sclerosis patients during an autobiographical memory test.

    Get PDF
    Our aim was to investigate the functional underpinnings of autobiographical memory (AM) impairment in multiple sclerosis (MS) patients. To that end, 18 patients and 18 controls underwent the autobiographical interview (AI). Subsequently, the 36 participants underwent a functional magnetic resonance imaging (fMRI) session designed to assess the construction and elaboration of AMs. A categorical control task was also presented. Patients were trained in the fMRI procedure to optimise the procedural aspects accompanying the task itself. Although the patients obtained significantly poorer AI scores (p < .001), their performance on the easier AM fMRI task was efficiently carried out, allowing relevant comparisons with healthy controls. Relatively to healthy controls, the patients showed increased and bilateral cerebral activations (p < .005) during the construction and elaboration phases. The prefrontal, temporal and posterior cerebral region activations were located within the core network sustaining AM, with the bilateral prefrontal region being centrally involved. The parametric neural responses to the difficulty of access and amount of details of memories were also significantly different for the two groups, with the right hippocampal region showing a particularly increased recruitment (p < .005). The findings suggested the presence of functional cerebral changes during AM performance and supported the presence of AM retrieval deficit in MS patients.journal articleresearch support, non-u.s. gov't20152014 09 22importe

    Near-Field Scanning Optical Microscope Combined with Digital Holography for Three-Dimensional Electromagnetic Field Reconstruction

    Get PDF
    International audienceNear-field scanning optical microscopy (NSOM) has proven to be a very powerful imaging technique that allows overcoming the diffraction limit and obtaining information on a scale much smaller than what can be achieved by classical optical imaging techniques. This is achieved using nanosized probes that are placed in close proximity to the sample surface, and thus allow the detection of evanescent waves that contain important information about the properties of the sample on a subwavelength scale. In particular, some aperture-based probes use a nanometer-sized hole to locally illuminate the sample. The far-field radiation of such probes is essential to their imaging properties, but cannot be easily estimated since it highly depends on the environment with which it interacts. In this chapter, we tackle this problem by introducing a microscopy method based on full-field off-axis digital holography that allows us to study in details the three-dimensional electromagnetic field scattered by a NSOM probe in different environments. We start by describing the NSOM and holography techniques independently, and continue by highlighting the advantage of combining both methods. We present a comparative study of the reconstructed light from a NSOM tip located in free space or coupled to transparent and plasmonic media. While far-field methods, such as back focal plane imaging, can be used to infer the directionality of angular radiation patterns, the advantage of our technique is that a single hologram contains information on both the amplitude and phase of the scattered light, allowing to reverse numerically the propagation of the electromagnetic field towards the source. We also present Finite Difference Time Domain (FDTD) simulations to model the radiation of the NSOM tip as a superposition of a magnetic and an electric dipole. We finally propose some promising applications that could be performed with this combined NSOM-holography technique

    The evolution of bicontinuous polymeric nanospheres in aqueous solution

    Get PDF
    Complex polymeric nanospheres in aqueous solution are desirable for their promising potential in encapsulation and templating applications. Understanding how they evolve in solution enables better control of the final structures. By unifying insights from cryoTEM and small angle X-ray scattering (SAXS), we present a mechanism for the development of bicontinuous polymeric nanospheres (BPNs) in aqueous solution from a semi-crystalline comb-like block copolymer that possesses temperature-responsive functionality. During the initial stages of water addition to THF solutions of the copolymer the aggregates are predominantly vesicles; but above a water content of 53% irregular aggregates of phase separated material appear, often microns in diameter and of indeterminate shape. We also observe a cononsolvency regime for the copolymer in THF–water mixtures from 22 to 36%. The structured large aggregates gradually decrease in size throughout dialysis, and the BPNs only appear upon cooling the fully aqueous dispersions from 35 °C to 5 °C. Thus, the final BPNs are ultimately the result of a reversible temperature-induced morphological transition

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link

    One-Year Postoperative Autobiographical Memory Following Unilateral Temporal Lobectomy for Control of Intractable Epilepsy

    No full text
    International audiencePurpose: To examine the effects of temporal lobec-tomy (TL), particularly concerning its lateralization. Methods: Patients completed autobiographical memory tests, preoperatively and 1-year postoperatively. Results: (a) right TL (RTL) patients recalled significantly more memories from the year after surgery than from the year before TL; (b) their pre to postoperative improvement on autobiographical memory scores was positively correlated to improvement of delayed story recall scores; and (c) 1 year after surgery, performance on recent personal memory recall was normalized for RTL patients only. Conclusion: We suggest that, in the absence of recurrent seizures, the relative integrity of the left hemisphere together with residual right hemisphere structures sustains postoperative autobiographical memory consolidation, at least 1 year post-operatively

    Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: the role of solvent-solvent correlations

    No full text
    The morphologies and sizes of micellar aggregates, composed of the tri-block copolymer P123 (EO20PO70EO20) in a mixture of the aprotic solvent N,N-dimethylformamide (DMF) and water, were investigated by combining Dynamic Light Scattering (DLS) and Cryogenic Transmission Electron Microscopy (cryo-TEM) experiments. At water concentrations between about 27 and 35 wt% bicontinuous micelles with distinct patterns were formed, in coexistence with very long, non-branched, worm-like micelles. Water concentration affects both the size and the morphology of the micellar aggregates. A careful study of the pure binary solvent mixture revealed the presence of dynamic solvent domains of nanometric size, even in the absence of copolymer. Strikingly, the size of these solvent nano-domains closely matched the size of the bicontinuous micelles in a polymer solution for the same water/DMF ratios. We discuss these findings in terms of spinodal decomposition of the polymer solution, in which two-solvent domains contain solvent quality fluctuations that could determine the decomposition. In addition, we suggest another "soft confinement" mechanism that could be responsible for the formation of bicontinuous micelles. The local excess of one of the solvent species in the nano-domains could entrap a metastable morphology
    corecore