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Chapter 

Near-field scanning optical microscope combined with digital 

holography for three-dimensional electromagnetic field reconstruction 

Nancy Rahbany, Ignacio Izzedin, Valentina Krachmalnicoff, Rémi Carminati, Gilles Tessier, Yannick De 

Wilde

Abstract Near-field scanning optical microscopy (NSOM) has proven to be a very powerful imaging 

technique that allows overcoming the diffraction limit and obtaining information on a scale much smaller 

than what can be achieved by classical optical imaging techniques. This is achieved using nanosized probes 

that are placed in close proximity to the sample surface, and thus allow the detection of evanescent waves 

that contain important information about the properties of the sample on a subwavelength scale. In 

particular, some aperture-based probes use a nanometer–sized hole to locally illuminate the sample. The 

far-field radiation of such probes is essential to their imaging properties, but cannot be easily estimated 

since it highly depends on the environment with which it interacts. In this chapter, we tackle this problem 

by introducing a microscopy method based on full-field off-axis digital holography that allows us to study 

in details the three-dimensional electromagnetic field scattered by a NSOM probe in different 

environments. We start by describing the NSOM and holography techniques independently, and continue 

by highlighting the advantage of combining both methods. We present a comparative study of the 

reconstructed light from a NSOM tip located in free space or coupled to transparent and plasmonic media. 

While far-field methods, such as back focal plane imaging, can be used to infer the directionality of 

angular radiation patterns, the advantage of our technique is that a single hologram contains information on 

both the amplitude and phase of the scattered light, allowing to reverse numerically the propagation of the 

electromagnetic field towards the source. We also present Finite Difference Time Domain (FDTD) 

simulations to model the radiation of the NSOM tip as a superposition of a magnetic and an electric dipole. 

We finally propose some promising applications that could be performed with this combined NSOM-

holography technique. 

1.1 Introduction to Near-field scanning optical microscopy (NSOM) 

Near-field Scanning Optical Microscopy (NSOM) is an important super-resolution imaging 

technique which is used to overcome the diffraction limit and study light-matter interaction at a 

subwavelength scale [1].  
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Sorbonne Université, CNRS, INSERM, Institut de la Vision

17 Rue Moreau, 75012 Paris, France

e-mail: gilles.tessier@sorbonne-universite.fr

E. Hanssen (ed.), Cellular Imaging, Biological and Medical Physics,

Biomedical Engineering, https://doi.org/10.1007/978-3-319-68997-5_1



2 

Fig. 1.1 Schematic of the advantages of SNOM compared to conventional far-field microscopy. 

Since the high frequency spatial components of the electromagnetic (EM) field are 

contained in the near field and decay exponentially with the distance from the sample, they are 

entirely lost when using far-field optical microscopy techniques. Therefore, the idea of near-

field microscopy is to collect the information contained in the near field and make it measurable 

with traditional far-field detection tools. Scattering-type NSOM uses a scanning probe, which is 

typically a tip with a sub-λ sized scatterer at its extremity, to measure the evanescent waves that 

are confined in the near field. The evanescent signal is scattered from the near field and is 

converted to a far-field propagating wave which is directed to a detector measuring its intensity. 

Then, the sample is scanned with respect to the tip to obtain a complete image of the scanned 

area point by point. Probing the near field allows to overcome the diffraction limit, which is why 

NSOM has proven to be a powerful “super-resolution” technique.  The method allows one 

indeed to perform sub-λ imaging, or to detect purely evanescent fields such as surface plasmon 

polaritons (SPPs). A schematic is shown in Fig 1.1. The resolution of an image obtained by 

NSOM depends on three parameters: the distance between adjacent points in the scanned area, 

the size of the tip, and the distance between the tip and the sample. Evidently, the highest 

resolution is obtained for a small tip apex and a small tip-sample distance. Fig 1.2 shows an 

example of a NSOM image taken from [2], where the propagating SPPs generated by metallic 

grating couplers are clearly detected. 

The history of the NSOM technique dates back to the beginning of the twentieth century, 

when E. Synge in collaboration with A. Einstein [3,4] came up with two concepts that led to the 

two main NSOM families known today: the apertureless scattering NSOM, and the aperture 

NSOM. Experimentally, the first near-field optical microscope functioning in the visible range 

was developed in 1986 [1,5]. 

- Apertureless scattering NSOMs include a diffusing tip or a nanoparticle that scatters the

near-field signal into the far-field. In free space, such tips are usually modeled as effective

electric dipoles where the electric field component parallel to the tip axis is enhanced [6–8].
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Fig. 1.2 Scattering NSOM measurement: a) Schematic side view of the metallic grating 

couplers device imaged here. Details about the structure can be found in [9]. The red curves 

schematically represent the mode profiles of waveguided SPP modes. b) Color-plot of the 

calculated squared modulus of the electric field in the x−z plane (SPP interference pattern). c) 

NSOM measurement in the x−z plane, i.e., NSOM signal as a function of the tip-to-surface 

distance at several x-positions on the sample. The measurement qualitatively agrees with the 

simulation in panel b. Figure taken from [2]. 

 

- Aperture NSOMs use tips fitted with a nano-aperture. This tip is sometimes made of metal, 

with a hole at its extremity, or most often a tapered metal-coated optical fiber (except for its 

end, where the aperture is located). Aperture SNOM tips can therefore be used in two 

different ways: as a collection aperture to detect the near-field signal, or as a nanoscale 

source of light through which the sample is illuminated locally. In the latter case, a precise 

knowledge of the characteristic of this nanosource is essential in order to quantitatively 

understand images obtained by scanning it above the sample. In particular, the shape and 

directionality (scattering diagram) of such sources are essential to the imaging properties of 

such systems, but are poorly known, either for SNOM tips in air, or in contact with a 

surface. 

Aperture SNOM tips were first studied theoretically by Bethe [10] and were modeled as 

a subwavelength hole in a perfectly conducting plane screen. Its radiation in free-space 

corresponded to that of a coherent superposition of a magnetic and an electric dipole [6,11–13]. 

However, recent studies have shown that  metal-coated hollow pyramidal probes behave solely 

as tangential magnetic dipoles when placed in the vicinity of metallic nanoantennas [14]. 

Therefore characterizing NSOM probes is not a straightforward and easy task. Their radiation 

patterns strongly depend on the type of probe as well as on the environment that they interact 

with. When such probes are placed close to the surface of a sample, the scattered field is highly 

affected by multiple reflections and interferences at the surface. This strong coupling between 

the probe and the surface makes it even more difficult to predict their EM radiation pattern in a 

given environment [15,16].  
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In addition to its detection role, a NSOM tip can also be used to excite and launch 

surface plasmon polaritons on the surface of metallic films [17]. It is important to mention here 

that the excitation of surface plasmons can also be performed by other techniques such as 

exciting surface defects [6,17], pointlike dipoles [18], and tunneling electrons [19,20], in 

addition to classical techniques such as prism or grating couplers. The far-field radiation pattern 

of leaky surface plasmons launched on metallic thin films by NSOM tips was previously studied 

using conventional back focal plane imaging techniques [17,21,22]. In such techniques, the 

intensity of the EM field is accurately measured in the Fourier plane of an optical system 

[23,24]. However, no information about the phase is obtained. In order to fully characterize the 

scattered EM field in three dimensions, both the intensity and the phase must be calculated. For 

this reason, we developed a combined NSOM-holography technique to accurately describe the 

radiation patterns of individual NSOM probes as a function of the local environment. The main 

advantage of our combined system is that it can directly deliver information about both the 

amplitude and the phase of the scattered light through the NSOM probe from a single recorded 

hologram. Then, following the procedure described in section 1.2, we can reconstruct the full 

three-dimensional scattered field coupled to the environment [25]. It is important to mention that 

Digital Holographic Microscopy was previously combined with NSOM for the purpose of 

achieving super-resolution imaging through a disordered scattering medium that is illuminated 

by subwavelength tips that act as point-like sources [26]. 

 

1.2 Principles of Digital Holography 

 

Holography is a technique that combines the processes of interference and diffraction to record 

and reconstruct the amplitude and phase of an electromagnetic field in three-dimensions. It was 

discovered in 1948 by Denis Gabor [27,28] who received a Nobel Prize in Physics for his work 

later in 1971. It wasn’t until the development of the lasers in 1960 that holography took its place 

in the optics domain [29].  

 The advantage of holography over conventional photography techniques is that it 

contains information about the entire three-dimensional wavefield which is contained in 

interference patterns. These patterns arise when the wave scattered by the object, or object wave, 

is illuminated by a reference wave, creating a hologram. This hologram is then illuminated with 

the reference wave again to obtain the three-dimensional reconstructed image of the 

electromagnetic field scattered by the object [30–36].   

 The general holography method is depicted in Fig 1.3. For recording a hologram (Fig 1.3 

a, left image), light from the laser is split into a reference beam and an object beam that 

illuminates the object. Both beams are directed to a detector where they interfere creating a 

hologram. For the reconstruction process (Fig 1.3 a, right image) of photographic-plate 

holograms, the developed hologram is illuminated with the reference wave. This creates a 

virtual image of the three-dimensional reconstructed object at a distance d, which is the position 

where the object had been before. Nowadays, holography is almost exclusively conducted using 

cameras, and the latter reconstruction step is performed digitally. 
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 Fig. 1.3 a) Schematic of the holography method: hologram recording (left), and reconstruction 

(right). b) Object and reference wavefronts incident on the detector plane shifted by a small 

angle, in a configuration known as off-axis holography.  

 

 Mathematically, the reference and object waves, ER and EO, are modelled by complex 

electric fields with amplitude A and phase φ: 

 

 𝐸𝑅(𝑥, 𝑦, 𝑧) = 𝐴𝑅(𝑥, 𝑦, 𝑧)exp(𝑖𝜑𝑅(𝑥, 𝑦, 𝑧)) (1) 

 𝐸𝑂(𝑥, 𝑦, 𝑧) = 𝐴𝑂(𝑥, 𝑦, 𝑧)exp(𝑖𝜑𝑂(𝑥, 𝑦, 𝑧)) (2) 

 

The recorded intensity at the detector plane (z = 0) is expressed as the square of the two 

complex fields: 

 

 𝐼(𝑥, 𝑦, 0) = |𝐸𝑂(𝑥, 𝑦, 0) + 𝐸𝑅(𝑥, 𝑦, 0)|
2 

= (𝐸𝑂(𝑥, 𝑦, 0) + 𝐸𝑅(𝑥, 𝑦, 0)) ∙ (𝐸𝑂(𝑥, 𝑦, 0) + 𝐸𝑅(𝑥, 𝑦, 0))
∗
 

= 𝐸𝑂(𝑥, 𝑦, 0)𝐸𝑂
∗ (𝑥, 𝑦, 0) + 𝐸𝑅(𝑥, 𝑦, 0)𝐸𝑅

∗(𝑥, 𝑦, 0) 

+𝐸𝑂(𝑥, 𝑦, 0)𝐸𝑅
∗(𝑥, 𝑦, 0) + 𝐸𝑅(𝑥, 𝑦, 0)𝐸𝑂

∗ (𝑥, 𝑦, 0) 

(3) 

 

The first term is the intensity of the scattered light from the object 𝐼𝑂(𝑥, 𝑦, 0) =

𝐸𝑂(𝑥, 𝑦, 0)𝐸𝑂
∗ (𝑥, 𝑦, 0). The second term is the intensity of the reference wave 𝐼𝑅(𝑥, 𝑦, 0) =

𝐸𝑅(𝑥, 𝑦, 0)𝐸𝑅
∗(𝑥, 𝑦, 0). Unlike the last two terms, these terms contain no information about the 

phase, and are therefore useless for the reconstruction process.  

a) 

b) 
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 The reconstruction procedure requires the illumination of the hologram with the 

reference wave. The resulting wave EH of the virtual image is: 

 

 𝐸𝐻(𝑥, 𝑦, 𝑧) ∝ 𝐸𝑅(𝑥, 𝑦, 𝑧) ∙ 𝐼(𝑥, 𝑦, 0) 

𝐸𝐻(𝑥, 𝑦, 𝑧) ∝ 𝐸𝑅(𝑥, 𝑦, 𝑧) ∙ (𝐼𝑅(𝑥, 𝑦, 0) + 𝐼𝑂(𝑥, 𝑦, 0)) 

+𝐸𝑅(𝑥, 𝑦, 𝑧) ∙ (𝐸𝑂(𝑥, 𝑦, 0) + 𝐸𝑅
∗(𝑥, 𝑦, 0)) 

+𝐸𝑅(𝑥, 𝑦, 𝑧) ∙ (𝐸𝑅(𝑥, 𝑦, 0) + 𝐸𝑂
∗ (𝑥, 𝑦, 0)) 

(4) 

 

The first term is the zeroth diffraction order and corresponds to the reference wave. The second 

term is the +1 diffraction order and corresponds to the virtual image, or the wave diffracted by 

the object which we care about in this study. The third term is the -1 diffraction order and 

corresponds to a conjugate object image, called the real image, positioned symmetrically with 

respect to the virtual image. 

 One wishes to be able to select only the +1 order and suppress the other two. This is done 

experimentally by off-axis holography (Fig 1.3 b), where the reference beam is shifted by a 

small angle with respect to the object beam [34]. As a consequence, the three diffraction orders 

are separated, allowing the selection of the desired order easily. These operations are usually 

performed in the Fourier space, or wave vectors k-space. 

 A fast Fourier transform (FFT) algorithm is used to reconstruct the original field. The 

hologram first undergoes a Fourier transform into the frequency space where spatial filtering of 

the unwanted diffraction orders takes place. The obtained complex field is then propagated 

towards the source before it is finally transformed back to the spatial domain. This is done by 4 

main steps: 

1. A first Fourier Transform to move to the frequency space:  

�̂�𝐻(𝑘𝑥 , 𝑘𝑦 , 0) = 𝐹𝑇{𝐸𝐻(𝑥, 𝑦, 0)} 

2. Spatial Filtering in k-space to select the +1 order and eliminate the other two:  

�̂�𝐻
𝑆𝐹(𝑘𝑥, 𝑘𝑦 , 0) = 𝑆𝐹{�̂�𝐻(𝑘𝑥, 𝑘𝑦, 0)} 

3. Propagation in k-space from z=0 to any plane z. This is done by multiplying the 

resulting complex field by a z-propagation function 𝐺(𝑘𝑥, 𝑘𝑦, 𝑧) = exp(𝑖𝑘𝑧𝑧):  

�̂�𝐻
𝑆𝐹(𝑘𝑥 , 𝑘𝑦, 𝑧) = �̂�𝐻

𝑆𝐹(𝑘𝑥 , 𝑘𝑦, 0) ∙ 𝐺(𝑘𝑥 , 𝑘𝑦, 𝑧) 

4. Second Fourier Transform to move back to the spatial domain:   

𝐸𝑂(𝑥, 𝑦, 𝑧) = 𝐹𝑇−1{�̂�𝐻
𝑆𝐹(𝑘𝑥, 𝑘𝑦, 𝑧)} 

An example of the above reconstruction procedure is presented in Fig 1.4. Here, we use 

an aperture NSOM tip in contact with a sample made up of a 40 nm gold film on a glass 

substrate. A typical hologram recorded in the plane of the camera is shown in Fig 1.4 a. This 

hologram is the result of interference between the light scattered through the aperture probe and 

the reference beam. Because of our off-axis configuration, interference fringes can be clearly 

seen (Fig 1.4 a inset). The first step of the reconstruction (Fourier transform of the recorded real 

space hologram) is shown in Fig 1.4 b, where we can clearly see the three diffraction orders 

separated in k-space. The zeroth order is seen at the center, and the +1 and -1 diffraction orders 

are separated symmetrically on both sides, also because of the off-axis configuration. The +1 

interference term needed to reconstruct the real image (highlighted by a red circle) is chosen and 

the two other terms are filtered out. We then propagate the filtered Fourier transform of the 
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hologram in k-space by multiplying by the propagator G. Finally, an inverse Fourier transform 

is performed which allows us to calculate the complex electromagnetic field in any z plane from 

the plane of the camera up to the plane of the NSOM tip. Piling up all the images together gives 

us the 3D reconstructed EM field scattered from the probe, where both the amplitude and phase 

can be calculated from a single hologram. Examples of the reconstructed images of intensity 

scattered through the substrate are shown in Fig 1.4 c for z = 10 μm below the tip up to the 

contact position (z = 0 μm).  

 

 

Fig. 1.4 a) Procedure for the reconstruction of the scattered EM field. a) Recorded hologram 

resulting from the interference between the reference beam and the light scattered by a NSOM 

probe through a plasmonic metal layer. Inset: magnified image showing the interference fringes. 

b) Fourier transform of the hologram showing the three diffraction orders in k-space: 0th order 

of diffraction in the center, +1 interference term (highlighted by the red circle, yields the real 

image after recontruction) and the -1 interference term (virtual image). c) Images of the field 

scattered by the tip in planes perpendicular to the tip axis, at distances varying between z=0 and 

z=10µm from the tip.  

 

1.3 Near-field scanning optical microscopy combined with digital holography 

 

In this section, we describe the results that we obtained with our integrated holography-SNOM 

technique where we study the light scattered by nanosized probes in various environments. We 

observe that the aperture tip in free space scatters light mainly in the forward direction with a 

broad angular distribution. When it is placed in contact with a glass substrate, light is scattered 
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exactly at an angle matching the critical angle of an air/glass interface. Finally, when the tip is 

placed in contact with a plasmonic metallic sample, leaky surface plasmons are observed at a 

supercritical emission angle. We also perform Finite Difference Time Domain (FDTD) 

simulations that support a model of the NSOM tip as a superposition of electric and magnetic 

dipoles. 

 

1.3.1 Experimental Setup 

 

In Fig. 1.5, we show a schematic of our optical setup, which is made up of a Mach−Zehnder 

off-axis interferometer combined with a commercial NSOM (WITec GmbH alpha 300s) [37] 

(figure taken from [38]). In our experiments we use a single mode He−Ne laser (Research 

Electro Optics R-32413, λ = 633 nm, P = 35 mW) that is coupled to a 90−10 fiber splitter. This 

splits the incident light into a sample beam with 90% of the initial power and a reference beam 

with the remaining 10%. We then focus our sample beam through a 20 ×, NA = 0.4 objective at 

the apex of a 150 nm SiO2 pyramidal aperture probe with an angle of ∼70°, coated with 120 

nm of aluminum (Al). This tip is placed either in free space or in contact with the sample to be 

studied. A closer look at this type of probes is given in the optical and SEM images of Fig 1.6 

(provided by the WITec company [39]). To finely control the relative position of the sample 

and the tip, we place our sample on a piezoelectric three-axis translation stage. Then the light 

transmitted through the tip apex is collected with a 100 ×, NA = 0.9 objective when the tip is in 

free space, and a 100 ×, NA = 1.4 oil immersion objective in the presence of a sample.  

 

Fig. 1.5 Schematic of the optical setup: an off-axis digital holographic microscope (DHM) is 

combined with a near-field scanning optical microscope (NSOM) using a metal-coated hollow 

pyramidal aperture tip. BS: beam splitter, Pol: polarizer, HWP: half-wave plate, CCD: charge 

coupled device camera. Figure taken from [38]. 
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It is then directed to a CMOS camera (Photon Focus MV-D1024 × 10−160-CL, sensor 

resolution: 1024 × 1024, 8 μm × 8 μm pixel matrix, 0.2 s exposure time). The reference beam 

is also sent with a few degree shift to the CMOS (off-axis configuration), where interference 

with the sample beam occurs. This detected hologram is all we need experimentally to be able 

to calculate the amplitude and phase of the scattered field and reconstruct the 3D pattern. 

Maximum contrast is attained by placing a polarizer and a half-wave plate in the path of both 

the sample and reference beams, ensuring that identical linear polarizations are being used. The 

reconstruction procedure is carried out numerically by a fast Fourier transform (FTT) algorithm 

following the procedure described in section 1.2. 

 

 

Fig. 1.6 Optical and SEM images of the NSOM probe with an aperture size ∼150 nm. Images 

provided by the WITec company [39]. 

 

 

1.3.2 3D Reconstructed EM Field through Different Media 

 

With this method, we characterize the scattered radiation pattern of a hollow NSOM probe 

placed in free space, and coupled to two types of surfaces: a transparent glass sample made of a 

160 μm thick glass coverslip (VWR Micro Cover Glasses, No. 1), and a plasmonic sample made 

of a 40 nm gold film evaporated on an identical glass coverslip. The numerical analysis 

described in Fig 1.4 is adopted. It relies on the method proposed by Cuche et al. [25,34]. In our 

calculations, we approximate the nanoaperture as a point-like source, and thus account for the 

fast decay of the optical intensity as ρ−2, where ρ is the distance to the tip in spherical 

coordinates. Therefore, all the intensity graphs are multiplied by ρ2 for clearer representation 

purposes.  

We start by representing the reconstructed EM field for the probe placed in free-space 

(Fig. 1.7 a).  A 2D cross section is taken in the x−z plane that is perpendicular to the sample 

surface (x−y), contains the axis of the linearly polarized illumination (x), and is perpendicular to 

the axis of the cantilever (y). We chose to calculate the intensity (Fig. 1.7 b), as well as the 

amplitude |A(x,y,z)| multiplied by the cosine of the corresponding phase cos ϕ(x,y,z) (Fig. 1.7 c) 

which allows us to easily observe the wavefronts of the propagating field. A map of the phase 

alone can also be reconstructed with our method [34]. From these results, we infer that a tip 

placed in free-space, or in other words, without any coupling to an external environment, 

behaves as a Lambertian point source, scattering an EM field centered about θ = 0° with a broad 

angular distribution. In addition, Finite Difference Time Domain (FDTD) simulations were 

performed to compare these experimental results to the theoretical description. Those 

simulations were done using the Lumerical Solutions software, where our metal-coated aperture 

20 µm 
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probe is modeled as a superposition of lateral magnetic (My ∝ Hy) and electric dipoles (Px ∝ Ex) 

of respective strengths 2 and 1, with x being the direction parallel to the incident light 

polarization direction. This model is adapted from the work of Obermüller and Karrai on the 

free space radiation of metal coated aperture tips [11]. In our simulations, we place a frequency-

domain field monitor in the x−z plane at the position of the NSOM tip, which allows us to 

calculate the complex EM intensity up to a distance of 10 μm in the substrate. We place another 

monitor in the x-y plane at a distance of 10 μm below the sample surface, which determines 

using Fourier-transform calculations, the projection of the scattered EM field into the far field. 

We use perfectly matched layer (PML) absorbing boundary conditions (32 PML layers) that are 

impedance-matched to the simulation region and its materials, and the value of the complex 

permittivity of gold is εgold = −12.047 + 1.163i at 633 nm, taken from Olmon et al [40]. It is 

important to note here that the simulations give only a qualitative approximation of the EM field 

radiated from the probes. This is due to two main reasons. First, this model can only be used to 

accurately describe small radiation angles [41], and second, the subwavelength details of the 

geometry of the metal-coated hollow probe and its interaction with two plane metal/dielectric 

interfaces are not taken into account [42]. The latter interaction can become important when the 

tip is coupled to a plasmonic sample [18,20]. We see from Fig 1.7 d that the simulation results 

are in good agreement with the experimental results. Note that this agreement is not achieved if 

the probe is modelled as an electric or magnetic dipole only, which confirms the fact that such 

hollow probes are best modelled as a superposition of perpendicular electric and magnetic 

dipoles. 

Subsequently, we perform the same analysis for the tip placed in contact with the 

transparent glass sample (Fig 1.8), and then with the plasmonic gold film sample (Fig 1.9). For 

the glass sample, we observe that in addition to the forward scattering around θ = 0°, light 

emerges along two preferred directions that correspond exactly to the critical angle of the air-

glass interface (|θc,glass| = 41.8° from Snell’s law). For the gold–coated sample, we observe that 

leaky surface plasmons are launched and emerge into the substrate at the resonance angles that 

satisfy the phase matching condition at the air-gold interface. This is calculated by the following 

conservation of momentum equation: 

 

𝑛𝑔𝑙𝑎𝑠𝑠
2𝜋

𝜆
𝑠𝑖𝑛𝜃𝑐,𝑔𝑜𝑙𝑑 = Re{

2𝜋

𝜆
√

𝜀𝑔𝑜𝑙𝑑

𝜀𝑔𝑜𝑙𝑑 + 1
} (5) 

where nglass is the index of refraction of the glass substrate, λ is the incident excitation 

wavelength, and εgold is the complex permittivity of the gold film. Using the index of refraction 

of the glass coverslip provided by the manufacturer (nglass = 1.525, from VWR International 

[43]), λ = 633 nm, and εgold = −12.047 + 1.163i (from Olmon et al. [40]), we find that |θc,gold| = 

43.3°. We are able to detect such emission angles experimentally because of the use of an oil 

objective with a high numerical aperture. FDTD simulation results agree with the experimental 

results for both the transparent (Fig 1.8 d) and the plasmonic sample (Fig 1.9 d). 
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Fig. 1.7 Reconstructed EM field scattered from the hollow metal-coated aperture probe placed 

in air (free-space). b) Intensity profile in the x-z plane along the axis of the tip. For clarity, the 

intensity values are multiplied by ρ2. c) Complex EM field represented by the product 

ρ|A(x,y,z)|cos(ϕ(x,y,z)), where A(x,y,z) is the amplitude, and ϕ(x,y,z)) the phase. Wavefronts 

are clearly observed. d) Corresponding FDTD simulated intensity multiplied by ρ2.  

 
Fig. 1.8 Reconstructed EM field scattered from the hollow metal-coated aperture probe placed 

in contact with the transparent glass substrate. b) Intensity profile in the x-z plane along the axis 

of the tip. For clarity, the intensity values are multiplied by ρ2. c) Complex EM field represented 

by the product ρ|A(x,y,z)|cos(ϕ(x,y,z)), where A(x,y,z) is the amplitude, and ϕ(x,y,z)) the phase. 

Wavefronts are clearly observed. d) Corresponding FDTD simulated intensity multiplied by ρ2.  
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Fig. 1.9 Reconstructed EM field scattered from the hollow metal-coated aperture probe placed 

in contact with the plasmonic sample made of a gold thin film on a glass substrate. b) Intensity 

profile in the x-z plane along the axis of the tip. For clarity, the intensity values are multiplied 

by ρ2. c) Complex EM field represented by the product ρ|A(x,y,z)|cos(ϕ(x,y,z)), where A(x,y,z) 

is the amplitude, and ϕ(x,y,z)) the phase. Wavefronts are clearly observed. d) Corresponding 

FDTD simulated intensity multiplied by ρ2.  

 

The directional emission of the leaky surface plasmons observed at the two resonance 

angles in the presence of the gold film clarifies the presence of the two narrow lobes seen in the 

Fourier transform image of the hologram (Fig 1.4 b). Because the probe is illuminated with 

linearly polarized light, surface plasmons are excited along a preferred direction which results in 

the two lobes observed both in k-space and in the reconstructed images in real space [17]. We 

also notice that due to the interference between the generated surface plasmons and the 

transmitted leaked radiation, fringes in the gold film are observed in both the experimental and 

simulation results (Fig 1.9 b and Fig 1.9d) [26]. This behavior is also seen in the x−y intensity 

images presented in Fig 1.10 that show the two lobes of the surface plasmons excited by the 

incident linear illumination [6,17]. These results highly resemble the results obtained by Drezet 

el al. [18] that are given in Fig 1.10 d.  
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Fig. 1.10 Reconstructed intensity of the scattered EM field calculated in the x-y plane at a) the 

surface of the metallic film sample, and at c) a distance of 5 μm inside the substrate. b) 

Normalized intensity profile along the dashed line in a). d) Figure taken from Drezet et al. [18] 

for comparison: Direct space images associated with a point like dipole radiating through the 

metal film and recorded in the back-focal plane of the microscope ocular. 

 

 

1.3.3 Characterization of the Angular Scattering 

 

From the results presented in the previous section, we can quantify the angular radiation patterns 

of the light scattered by the NSOM tip through different environments. In the graphs of Fig 

1.11, we plot the normalized intensity of the scattered light as a function of the emission angle 

in polar coordinates for the three cases studied previously; tip in free-space (Fig 1.11 a), in 

contact with the glass substrate (Fig 1.11 b), and in contact with the gold film on a glass 

substrate (Fig 1.11 c). The plotted experimental data points (in blue) are in spherical coordinates 

and are selected in a way to obey two selection rules. First, they are chosen to lie in the x-z 

plane of the NSOM tip perpendicular to the surface of the sample. Second, we made sure that 

each angle θ has only one attributed intensity value. To this end, we select the data that lie only 

in a spherical shell of thickness Δρ = 30 nm centered on the aperture tip. The corresponding 

FDTD simulation results of the far-field radiation patterns of a superposition of a magnetic and 

electric dipole are plotted in black. Very good agreement is obtained for all the three cases. The 

angular radiation patterns confirm the observations presented in section 1.3.2 (Figures 1.7, 1.8 

and 1.9). In fact, we observe that the intensity of the scattered light from the tip in free-space 

decays exponentially around a maximum value centered at θ = 0° (Fig 1.11 d). We also 
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quantitatively verify that for the tip placed in contact with the glass sample (Fig 1.11 e), most of 

the light is scattered exactly at the critical angle ± |θc,glass| = 41.8° in addition to a broad 

distribution around θ = 0°. As for the plasmonic sample, we verify that the generated leaky 

plasmons are transmitted into the substrate at an angle of ± |θc,gold| = 43.3°, which is higher than 

the critical angle of the medium. This highly directional scattering, narrower than in the 

previous cases, again reinforces our previous observation of the two lobes with a preferential 

direction caused by the surface plasmons. Surface plasmons are indeed highly selective in angle, 

both for their excitation and, as shown here, their leakage. 

 

 

Fig. 1.11 Angular radiation patterns of the scattered light from a NSOM probe placed in a) air, 

b) in contact with a glass substrate, and c) a gold thin film on a glass substrate. d), e), f) 

Normalized intensity plotted in polar coordinates as a function of the angle of emission θ. 

Emission peaks point to an angle ± |θc,glass| = 41.8° in e) and to ± |θc,gold| = 43.3° in f).  

 

Next, we aim at comparing the behavior of the NSOM probe in the case where it is 

placed in the far-field region above the sample to the case where it is placed in contact with the 

sample in the near-field region. To do that, we place the tip at a distance of 3 μm above the 

sample surface, and repeat the same characterization procedure. The angular radiation pattern is 

plotted in Fig 1.12. By comparing Fig 1.12 b to Fig 1.11 e, we notice the very high resemblance 

between the two plots, which allows us to conclude that the gold film has no effect on the 

transmitted light through the substrate when the incident light source is placed in the far field. 

This is because in this case, only small wavevectors are created by the tip, and therefore surface 

plasmons cannot be generated. The angular emission thus corresponds to that of a glass 

substrate, with maxima occurring at an angle of ± 40.5° (below θc,glass). We verified this result by 

performing the same experiment with the tip placed at a 3 μm height above a glass substrate, 

and the same exact emission angle was observed.  In addition, due to the weak transmission of 

the gold film, the maximum intensity at ρ = 10 μm is found to decrease by a factor of 2.5 when 

the tip is placed in the far field. These results agree with those obtained by Hecht et al. [17] 

using back-focal plane and real space imaging. The complex EM field represented by the 

product ρ|A(x,y,z)|cos(ϕ(x,y,z)) is shown in Fig 1.12 c, where we can also clearly see that there 

are no leaky surface plasmons generated as opposed to the case where the tip is in contact with 

the film (Fig 1.9 c). 
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Fig. 1.12 Angular radiation patterns of the scattered light from a NSOM probe placed a) at 3 

μm above a gold thin film on a glass substrate. b) Normalized intensity plotted in polar 

coordinates as a function of the angle of emission θ. Emission peaks point to an angle ± |θ| = 

40.5°. c) Corresponding complex EM field represented by the product ρ|A(x,y,z)|cos(ϕ(x,y,z)), 

where A(x,y,z) is the amplitude, and ϕ(x,y,z)) the phase. 

 

 

1.4 Possible Applications 

 

1.4.1 Coupled Nanoantennas 

 

Now that we are certain of the functionality of our near-field scanning optical microscope 

combined with digital holography, we can use it to fully characterize the scattered 

electromagnetic field from any nanostructure. Optical nanoantennas are interesting candidates 

due to their unique control of absorption and emission at the nanometer scale: high confinement, 

enhancement and directivity of electromagnetic radiation at a subwavelength dimensions. They 

have wide applications such as wavelength tuning, nano-trapping, nano-sensing, near-field 

imaging, photodetection, directional emission, etc. As discussed above, many techniques such as 

back-focal plane imaging were successfully used to describe the radiation pattern and scattering 

angles of different types of nanoantennas. However, we emphasize that the advantage of our 

technique is that both the amplitude and phase of the EM field scattered by an optical 

nanoantenna can be measured in one plane located in the far field, and then back-propagated to 

perform 3D reconstructions near the nano-antenna. Previous work using heterodyne holography 

were successfully done by the group of G. Tessier, where the simultaneous localization and 

selection of gold nanoparticles in three dimensions was studied with near-diffraction resolution 

[44]. The full scattered three-dimensional electromagnetic field of plasmonic gold nanodisk 

chains fabricated by e-beam lithography was also measured using the same holography 

technique [25] using single-shot hologram acquisition associated to a reconstruction of the 3D 

scattering pattern of the antennas. Cross sections of the reconstructed scattered field in different 
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planes is shown in Fig 1.13 (taken from the paper of Suck et al. [25]). Although the holographic 

images are diffraction-limited, the shape of the disk chain is clearly identified, as well as 

electromagnetic hotspots that are created in the nanoantennas. In addition, strong directional 

scattering is observed (note the different scalebars in 1.13a and 1.13b, showing an 

approximately x6 enhancement of the scattering near the resonant wavelength). 

With the combined NSOM-holography setup described in the present chapter, such studies can 

be extended further to study the coupling between NSOM tips and different types of optical 

nanoantennas. The full 3D scattering pattern of a locally excited nanoantenna and the influence 

of the position of the excitation source should become accessible. As mentioned earlier, recent 

studies have shown that a metal-coated hollow pyramidal probe coupled to a nanoantenna 

behaves as a tangential magnetic dipole. A schematic of the mentioned results is shown in Fig 

1.14 and is taken from the paper of Denkova et al. [14]. Here, digital holography can be helpful 

to experimentally characterize this coupling behavior between nanosized probes and different 

types of nanoantennas using only a single hologram. 

 Another application would be to characterize the scattering behavior of NSOM probes 

with embedded nanoantennas at their extremities [23,45]. Due to the presence of defects at the 

subwavelength scale [46], the optical response of such nanoantennas might strongly deviate 

from expectations, and will depend on the environment. This problem can be fully addressed 

and controlled by our technique as well. 

 

 
Fig. 1.13 Scattered field reconstructed from a single hologram of a nanodisk chain at non-

resonant (=785 nm) (a) and resonant (=658 nm) (b) wavelengths, for an illumination 

polarized along the long axis (y) of the nanoantenna system. Cross-sections along different 

planes centered on the antenna: x-y (top), y-z (middle) and x-z (bottom). Figure taken from [25]. 
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Fig. 1.14 a) Schematic of a hollow-pyramid NSOM probe coupled to a plasmonic nanoantenna. 

b) Simulations of the charge density, electric and magnetic field distributions. Figure taken from 

[14]. 

 

1.4.2 Brownian nanoparticles as stochastic optical probes 

 

In much the same way as a scattering NSOM probe, nanoparticles can be used to scatter the 

local near field. In liquids, one can take advantage of the Brownian motion of nanoparticles in 

order to explore the volume of the sample: the movement of the probes is then stochastic, 

instead of deterministic as in classical NSOM experiments. Each of the particles can behave as a 

subwavelength probe and, as it moves in an illuminated region of the sample, scatter the local 

field towards the holographic microscope described above. The reconstruction of the scattering 

field allows the 3D super localization of the particle, i.e. the determination of its center of mass 

with an accuracy which is only limited by the signal-to-noise ratio of the detection [47]. This 

localization can be achieved with 3x3x10 nm3 accuracy, and the scattering intensity is directly 

proportional to the local optical field provided that the particles are monodisperse, and therefore 

have identical scattering cross sections. Fig.1.15 shows the 3D image of a focused laser beam 

obtained by accumulating 36000 localization events. As shown in [48], the acquisition time 

required to reach the desired volume coverage can be estimated, and a full superresolved 3D 

image of the optical scene can be acquired with a resolution which is only limited by either the 

size of the particles (here, 100 nm) or the localization accuracy.  
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a)  b)  

Fig. 1.15 a) schematic description of an experiment using gold nanoparticles in Brownian 

motion in water as local probes. A  = 660 nm diode laser beam is focused in water. Light is 

scattered by r=50 nm gold nanoparticles towards a holographic microscope. Each particle is 

localized in 3D with a 3x3x10 nm3 accuracy in post-processing. b) 3D position of 36000 

localization events. The intensity I(x,y,z) recorded at each location is represented by the size of 

the spheres. The resolution of the image is limited only by the localization accuracy and the size 

of the particle, both well below the diffraction limit. Adapted from [47]. 

 

1.4.3 Scattering through Disordered Media 

 

It has been recently proposed that scattering media can be used to couple the information 

contained in the near-field wave vectors to the observable far-field with conventional optics 

[49]. The multiple elastic scattering that light experiences in such a medium exhibits time-

reversal symmetry, a property that has been used in optics to achieve image transmission 

through opaque materials [50] or perfect absorption [51], among other phenomena.  

 Near-field scanning optical microscope combined with digital holography can be applied 

to probe the optical properties of such strongly scattering media using aperture tips. The 

nanosized tips act as point-like sources and are used to excite the input modes of strongly 

scattering media. The transmitted far-field signal is measured holographically and, as shown 

before, the complex field can be reconstructed at any point in space between the camera and the 

output of the scattering media. This allows us to accurately describe the amplitude and phase of 

the propagating electromagnetic field and compare its behavior through different scattering 

media. An example of holographic reconstruction of the 3D speckle formed after placing a 

NSOM tip acting as a temporally coherent nanolight source on a disorderd scattering medium 

made of 100 nm diameter TiO2 nanoparticles is shown in Fig. 1.16. This reconstruction can be 

seen as the spatial point spread function corresponding to a local sub- sized excitation of the 

disordered medium.  By measuring a hologram when the NSOM tip is at every possible location 

over the disordered medium, the full spatial response of the medium (or its Green’s function) 

can be determined. Conversely, this can subsequently be used as a superlens allowing super-

resolution imaging in the visible spectrum. With such holographic characterization combined to 

point-like excitation of the disordered medium, it therefore becomes possible to get access to 
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full-field subwavelength imaging of structures containing high spatial frequencies typically not 

propagating into the far-field. A proof of principle of the coupling of the near-field information 

to the far field by means of a disordered medium, and of its holographic detection has been 

achieved by Park et al. [49]. Fig. 1.17, taken from the cited paper by Park et al., shows a 

schematic of the experimental concept where the transmitted far-field signal generated from a 

near-field aperture tip has been detected holographically at different locations on the sample, 

and the original field has been recovered.  

 

 

Fig. 1.16 Intensity plots in the x-y plane (left) and x-z plane (right) of the reconstructed speckle 

generated by the scattered light from the NSOM tip through a disordered medium made up of 

100 nm TiO2 nanoparticles.  

 

 

Fig. 1.17 Schematic diagram of experimental concept. (a) Measurement of the TM with a point-

like source generated by a near-field aperture as the input basis. The TM is composed of speckle 

fields propagating through the turbid medium from the near-field aperture. (b) Recovery of the 

original field on the turbid medium from the speckle field generated by an arbitrary sample 

based on the linear relation between the input and output modes. (c) Example of super-resolved 

image produced point by point with a NSOM aperture probe obtained by means of holographic 

measurements of the speckle field at various probe positions (Scale bar corresponds to 500 nm). 

Figures taken from [49]. 

 

 

1.5 Conclusion 

 

In this chapter, we presented a full-field off-axis holography technique combined with a NSOM. 

This combination yields an accurate three-dimensional description of the scattered 
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electromagnetic field from a subwavelength probe. This is possible because, from a single 

recorded hologram, we are able to obtain information not only about the intensity, but also about 

the phase of the scattered electromagnetic field in any plane away from the tip. We applied this 

method to fully characterize the light scattered by the metal-coated hollow pyramidal aperture 

tip of a NSOM placed in free space, and coupled to transparent and plasmonic media. We 

supported our experimental results with FDTD simulations that model such type of probes as a 

superposition of an electric and magnetic dipole. We can also conclude that the behavior of a 

NSOM probe is highly related to its coupling to the environment.  

This experimental and numerical validation opens the way for a broad range of new 

applications taking advantage of both the subwavelength localization possibilities of SNOM and 

the amplitude and phase imaging capabilities of holography. The study of complex 

subwavelength systems such as nanoantennas and resonators, as well as multiple scattering 

through disordered media should now be within reach. 
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