42 research outputs found

    Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials

    Full text link

    Value of quantifying ABC transporters by mass spectrometry and impact on in vitro-to-in vivo prediction of transporter-mediated drug-drug interactions of rivaroxaban

    No full text
    International audienceABC transporters, such as P-gp and BCRP, are involved in rivaroxaban pharmacokinetics and can lead to drug-drug interactions (DDIs). Investigations of the victim role for rivaroxaban and transporter-mediated DDI are commonly performed using in vitro models. However, interpretation of rivaroxaban efflux transport and DDI studies in cell models may be influenced by P-gp and BCRP transporter abundance. This study aimed to develop an LC-MS/MS quantification method for assessing the relationship between transporter expression and functionality in Caco-2ATCC, Caco-2ECACC, MDCK-MDR1, MDCK-BCRP cell models. First, the relative and absolute quantities of the transporters were determined by LC-MS/MS. P-gp and BCRP expression was then confirmed by western blotting and immunofluorescence staining. Finally, P-gp and BCRP functional activities and half-inhibitory concentrations (IC50s) of two specific inhibitors (verapamil and ko143) were determined by bidirectional transport experiments. P-gp and BCRP protein expression was detected at the cell membrane and was greater in the respective transfected models. Efflux ratios were correlated with P-gp and BCRP quantities. The lowest IC50s were obtained in the MDCK-MDR1 and MDCK-BCRP models for verapamil and ko143, respectively. In conclusion, this study demonstrated that LC-MS/MS can accurately quantify P-gp and BCRP efflux transporters and thereby improve the interpretation of transport data and in vitro-in vivo correlations

    Potential usefulness of activated charcoal (DOAC remove®) for dRVVT testing in patients receiving Direct Oral AntiCoagulants

    No full text
    International audienceIntroduction Lupus Anticoagulant testing using dilute Russell Viper Venom Time (dRVVT) is challenging in patients receiving Direct Oral AntiCoagulants (DOAC) due to potential false positive results. In a multicenter study, we evaluated the in vitro removal of DOAC by activated charcoal (DOAC remove®), allowing reliable dRVVT testing. Materials and methods Patient samples were analyzed before and after treatment with DOAC remove® 49 apixaban, 48 rivaroxaban, 24 dabigatran and 30 none. DOAC plasma concentrations were measured using anti-Xa or diluted thrombin time assays. In a subset of 28 samples, DOAC concentrations were also measured using HPLC-MS/MS following treatment with DOAC remove®. DRVVT was performed using STA-Staclot dRVVT Screen®/Confirm® (Stago) or LAC-Screening®/Confirmation® (Siemens). Results Baseline median [min-max] concentrations were 94 [<20–479] for apixaban, 107 [<20–501] for rivaroxaban and 135 ng/mL [<20–792] for dabigatran; dRVVT screen ratio/confirm ratio was positive in 47, 90 and 42% of apixaban, rivaroxaban and dabigatran samples. Treatment with DOAC remove® did not affect dRVVT results in non-DOAC patients while it resulted in DOAC concentrations <20 ng/mL in 82, 98 and 100% of samples, respectively. Concentrations were <5 ng/mL with HPLC-MS/MS in 5 out of 10, 8 out of 10 and 7 out of 8 samples, respectively. DOAC remove® corrected DOAC interference with dRVVT assays in 76, 85 and 95% of the patients, respectively. Conclusion For dRVVT testing in DOAC patients, we suggest the use of DOAC remove® for every rivaroxaban sample, whereas it might only be used in positive apixaban and dabigatran samples. A residual DOAC interference cannot be ruled out in case of persisting dRVVT positive results after treatment with DOAC remove®. © 2019 Elsevier Lt
    corecore