100 research outputs found

    B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans

    Get PDF
    Engagement of cytokine receptors by specific ligands activate Janus kinase–signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a potent regulator of B cell differentiation. We have studied patients with inactivating mutations in STAT1 or STAT3 to dissect their contribution to B cell function in vivo and in response to IL-21 in vitro. STAT3 mutations dramatically reduced the number of functional, antigen (Ag)-specific memory B cells and abolished the ability of IL-21 to induce naive B cells to differentiate into plasma cells (PCs). This resulted from impaired activation of the molecular machinery required for PC generation. In contrast, STAT1 deficiency had no effect on memory B cell formation in vivo or IL-21–induced immunoglobulin secretion in vitro. Thus, STAT3 plays a critical role in generating effector B cells from naive precursors in humans. STAT3-activating cytokines such as IL-21 thus underpin Ag-specific humoral immune responses and provide a mechanism for the functional antibody deficit in STAT3-deficient patients

    Stochastic Models of Lymphocyte Proliferation and Death

    Get PDF
    Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of inter-division times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics

    Regulation of human CD4+ T cell differentiation

    Get PDF
    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation

    Cell-Intrinsic NF-κB Activation Is Critical for the Development of Natural Regulatory T Cells in Mice

    Get PDF
    regulatory T (Treg) cells develop in the thymus and represent a mature T cell subpopulation critically involved in maintaining peripheral tolerance. The differentiation of Treg cells in the thymus requires T cell receptor (TCR)/CD28 stimulation along with cytokine-promoted Foxp3 induction. TCR-mediated nuclear factor kappa B (NF-κB) activation seems to be involved in differentiation of Treg cells because deletion of components of the NF-κB signaling pathway, as well as of NF-κB transcription factors, leads to markedly decreased Treg cell numbers in thymus and periphery. thymic Treg precursors and their further differentiation into mature Treg cells. Treg cell development could neither be completely rescued by the addition of exogenous Interleukin 2 (IL-2) nor by the presence of wild-type derived cells in adoptive transfer experiments. However, peripheral NF-κB activation appears to be required for IL-2 production by conventional T cells, thereby participating in Treg cell homeostasis. Moreover, pharmacological NF-κB inhibition via the IκB kinase β (IKKβ) inhibitor AS602868 led to markedly diminished thymic and peripheral Treg cell frequencies.Our results indicate that Treg cell-intrinsic NF-κB activation is essential for thymic Treg cell differentiation, and further suggest pharmacological NF-κB inhibition as a potential therapeutic approach for manipulating this process

    Molecular Pathogenesis of EBV Susceptibility in XLP as Revealed by Analysis of Female Carriers with Heterozygous Expression of SAP

    Get PDF
    X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP+ and SAP− cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8+ T cells specific for CMV and influenza were distributed across SAP+ and SAP− populations, EBV-specific cells were exclusively SAP+. The preferential recruitment of SAP+ cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8+ T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP− clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP− CD8+ T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited

    RORγt + Treg to Th17 ratios correlate with susceptibility to Giardia infection

    Get PDF
    Funder: Fundacion Alfonso Martin EscuderoFunder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268Funder: Isaac Newton Trust; doi: https://doi.org/10.13039/501100004815Abstract: Infections with Giardia are among the most common causes of food and water-borne diarrheal disease worldwide. Here, we investigated Th17, Treg and IgA responses, and alterations in gut microbiota in two mouse lines with varying susceptibility to Giardia muris infection. Infected BALB/c mice shed significantly more cysts compared with C57BL/6 mice. Impaired control of infection in BALB/c mice was associated with lower Th17 activity and lower IgA levels compared with C57BL/6 mice. The limited metabolic activity, proliferation and cytokine production of Th17 cells in BALB/c mice was associated with higher proportions of intestinal Foxp3+RORγt+ regulatory T cells and BALB/c mice developed increased RORγt+ Treg:Th17 ratios in response to G. muris infection. Furthermore, G. muris colonization led to a significantly reduced evenness in the gut microbial communities of BALB/c mice. Our data indicate that differential susceptibility to Giardia infections may be related to RORγt+ Treg controlling Th17 activity and that changes in the microbiota composition upon Giardia infection partially depend on the host background

    Cyclin-Dependent Kinases Regulate Ig Class Switching by Controlling Access of AID to the Switch Region

    No full text
    Ig class switching requires cell proliferation and is division linked, but the detailed mechanism is unknown. By analyzing the first switching cells early in the kinetics, our analysis suggested that proliferating B cells had a very short G(1) phase (<3.5 h), a total cell cycle time of ∼11 h, and that Ig class switching preferentially occurred in the late G(1) or early S phase. Inhibition of cyclin-dependent kinases (CDKs) caused dramatic reduction of switching rate within 6 h. This was associated with less targeting of activation-induced cytidine deaminase (AID) to the Igh locus. Interestingly, ectopically expressed nuclear AID in HeLa cells was preferentially found in the early S phase. Furthermore, in CDK2 hypomorphic cells there was reduced nuclear AID accumulation. Thus, our data are compatible with the idea that division-linked Ig class switching is in part due to CDK2-regulated AID nuclear access at the G(1)/S border

    Increased core body temperature exacerbates defective protein prenylation in mouse models of mevalonate kinase deficiency

    Get PDF
    Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1β, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares
    corecore