132 research outputs found

    Magnetic Force Exerted by the Aharonov-Bohm Line

    Full text link
    The problem of the scattering of a charge by the Aharonov-Bohm (AB) flux line is reconsidered in terms of finite width beams. It is shown that despite the left-right symmetry in the AB scattering cross-section, the charge is scattered asymmetrically. The asymmetry (i.e. magnetic force) originates from almost forward scattering within the angular size of the incident wave. In the paraxial approximation, the real space solution to the scattering problem of a beam is found as well as the scattering S-matrix. The Boltzmann kinetics and the Landau quantization in a random AB array are considered.Comment: 5 pages, RevTeX. Discussions of paraxial approximation to the Aharonov-Bohm solution (Cornu spiral) and S-matrix, are extended. References are adde

    Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity

    Full text link
    A moving dielectric medium acts as an effective gravitational field on light. One can use media with extremely low group velocities [Lene Vestergaard Hau et al., Nature 397, 594 (1999)] to create dielectric analogs of astronomical effects on Earth. In particular, a vortex flow imprints a long-ranging topological effect on incident light and can behave like an optical black hole.Comment: Physical Review Letters (accepted

    Parametric generation of second sound in superfluid helium: linear stability and nonlinear dynamics

    Full text link
    We report the experimental studies of a parametric excitation of a second sound (SS) by a first sound (FS) in a superfluid helium in a resonance cavity. The results on several topics in this system are presented: (i) The linear properties of the instability, namely, the threshold, its temperature and geometrical dependencies, and the spectra of SS just above the onset were measured. They were found to be in a good quantitative agreement with the theory. (ii) It was shown that the mechanism of SS amplitude saturation is due to the nonlinear attenuation of SS via three wave interactions between the SS waves. Strong low frequency amplitude fluctuations of SS above the threshold were observed. The spectra of these fluctuations had a universal shape with exponentially decaying tails. Furthermore, the spectral width grew continuously with the FS amplitude. The role of three and four wave interactions are discussed with respect to the nonlinear SS behavior. The first evidence of Gaussian statistics of the wave amplitudes for the parametrically generated wave ensemble was obtained. (iii) The experiments on simultaneous pumping of the FS and independent SS waves revealed new effects. Below the instability threshold, the SS phase conjugation as a result of three-wave interactions between the FS and SS waves was observed. Above the threshold two new effects were found: a giant amplification of the SS wave intensity and strong resonance oscillations of the SS wave amplitude as a function of the FS amplitude. Qualitative explanations of these effects are suggested.Comment: 73 pages, 23 figures. to appear in Phys. Rev. B, July 1 st (2001

    The effect of seed traits on geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Acanthoscelides macrophthalmus

    Get PDF
    Explaining large-scale patterns of variation in body size has been considered a central question in ecology and evolutionary biology because several life-history traits are directly linked to body size. For ectothermic organisms, little is known about what processes influence geographic variation in body size. Changes in body size and sexual size dimorphism (SSD) have been associated with environmental variables, particularly for Bruchinae insects, which feed exclusively on seeds during the larval stage. However, the effect of important seed traits on body size variation has rarely been investigated, and whether SSD varies substantially among populations within bruchine species is poorly known. Using the seed-feeding beetle Acanthoscelides macrophthalmus infesting its host plant Leucaena leucocephala, we investigated whether specific seed traits (hardness, size, water content, carbon/nitrogen ratio, and phenolic content) were determinant in generating geographic variation in body size and SSD of A. macrophthalmus. We also examined the relationships between body size and SSD with latitude and altitude. The body size of both sexes combined was not related to latitude, altitude, and any of the physical and chemical seed traits. However, the female body size tended to vary more in size than the males, generating significant variation in SSD in relation to latitude and altitude. The females were the larger sex at higher latitudes and at lower altitudes, precisely where seed water content was greater. Therefore, our results suggest that water content was the most important seed trait, most severely affecting the females, promoting geographic variation in SSD of A. macrophthalmus.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fed Univ Sao Paulo Unifesp, Lab Ecol Populac LEPOP, Dept Biol Sci, BR-09941510 Sao Paulo, BrazilDepartment of Biological Sciences, Laboratório de Ecologia Populacional (LEPOP), Universidade Federal de São Paulo (UNIFESP), Diadema, São Paulo, 09941‐510 BrazilFAPESP: 12/11612-4Web of Scienc

    Optics of Nonuniformly Moving Media

    Full text link
    A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray propagation. We elucidate how the gravitational and the magnetic model of light propagation are related to each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov--Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black hole.Comment: Physical Review A (submitted

    The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios

    Get PDF
    The accumulation of amyloid-beta (Abeta) and tau aggregates is a pathological hallmark of Alzheimer's disease. Both polypeptides form fibrillar deposits, but several lines of evidence indicate that Abeta and tau form toxic oligomeric aggregation intermediates. Depleting such structures could thus be a powerful therapeutic strategy. We generated a fragment of tau (His-K18DeltaK280) that forms stable, toxic, oligomeric tau aggregates in vitro. We show that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol that was previously found to reduce Abeta aggregation, inhibits the aggregation of tau K18DeltaK280 into toxic oligomers at ten- to hundred-fold substoichiometric concentrations, thereby rescuing toxicity in neuronal model cells

    Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly

    Get PDF
    Increases in thermal variability elevate metabolic rate due to Jensen's inequality, and increased metabolic rate decreases the fitness of dormant ectotherms by increasing consumption of stored energy reserves. Theory predicts that ectotherms should respond to increased thermal variability by lowering the thermal sensitivity of metabolism, which will reduce the impact of the warm portion of thermal variability. We examined the thermal sensitivity of metabolic rate of overwintering Erynnis propertius (Lepidoptera: Hesperiidae) larvae from a stable or variable environment reared in the laboratory in a reciprocal common garden design, and used these data to model energy use during the winters of 1973–2010 using meteorological data to predict the energetic outcomes of metabolic compensation and phenological shifts. Larvae that experienced variable temperatures had decreased thermal sensitivity of metabolic rate, and were larger than those reared at stable temperatures, which could partially compensate for the increased energetic demands. Even with depressed thermal sensitivity, the variable environment was more energy-demanding than the stable, with the majority of this demand occurring in autumn. Autumn phenology changes thus had disproportionate influence on energy consumption in variable environments, and variable-reared larvae were most susceptible to overwinter energy drain. Therefore the energetic impacts of the timing of entry into winter dormancy will strongly influence ectotherm fitness in northern temperate environments. We conclude that thermal variability drives the expression of metabolic suppression in this species; that phenological shifts will have a greater impact on ectotherms in variable thermal environments; and that E. propertius will be more sensitive to shifts in phenology in autumn than in spring. This suggests that increases in overwinter thermal variability and/or extended, warm autumns, will negatively impact all non-feeding dormant ectotherms which lack the ability to suppress their overwinter metabolic thermal sensitivity

    Stage-Specific Effects of Candidate Heterochronic Genes on Variation in Developmental Time along an Altitudinal Cline of Drosophila melanogaster

    Get PDF
    Background: Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect variation in developmental time in natural populations. Methodology/Principal Findings: Here, we constructed second chromosome substitution lines from natural populations of Drosophila melanogaster from an altitudinal cline, and measured egg-adult development time for each line. We found not only a large amount of genetic variation for developmental time, but also positive associations of the development time with thermal amplitude and altitude. We performed genetic complementation tests using substitution lines with the longest and shortest developmental times and heterochronic mutations. We identified segregating variation for neurogenic and metabolic genes that largely affected the duration of the larval stages but had no impact on the timing of metamorphosis. Conclusions/Significance: Altitudinal clinal variation in developmental time for natural chromosome substitution lines provides a unique opportunity to dissect the response of heterochronic genes to environmental gradients. Ontogenetic stage-specific variation in invected, mastermind, cricklet and CG14591 may affect natural variation in development time an
    corecore