235 research outputs found

    Thermal Detection Thresholds of AΞ΄- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin

    Get PDF
    Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of AΞ΄- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of AΞ΄-fibres is avoided. Here, using a novel CO2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by AΞ΄- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of AΞ΄-fibres (46.9Β±1.7Β°C) and C-fibres (39.8Β±1.7Β°C). Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the AΞ΄- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between AΞ΄- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and AΞ΄-fibre input, respectively

    Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of treatment in hemianopic patients to restore missing vision is controversial. So far, successful techniques require laborious stimulus presentation or restrict improvements to selected visual field areas. Due to the large number of brain-damaged patients suffering from visual field defects, there is a need for an efficient automated treatment of the total visual field.</p> <p>Methods</p> <p>A customized treatment was developed for the reaction perimeter, permitting a time-saving adaptive-stimulus presentation under conditions of maximum attention. Twenty hemianopic patients, without visual neglect, were treated twice weekly for an average of 8.2 months starting 24.2 months after the insult. Each treatment session averaged 45 min in duration.</p> <p>Results</p> <p>In 17 out of 20 patients a significant and stable increase of the visual field size (average 11.3Β° Β± 8.1) was observed as well as improvement of the detection rate in the defective visual field (average 18.6% Β± 13.5). A two-factor cluster analysis demonstrated that binocular treatment was in general more effective in augmenting the visual detection rate than monocular. Four out of five patients with a visual field increase larger than 10Β° suffered from hemorrhage, whereas all seven patients with an increase of 5Β° or less suffered from infarction. Most patients reported that visual field restoration correlated with improvement of visual-related activities of daily living.</p> <p>Conclusion</p> <p>Rehabilitation treatment with the Lubeck Reaction Perimeter is a new and efficient method to restore part of the visual field in hemianopia. Since successful transfer of treatment effects to the occluded eye is achieved under monocular treatment conditions, it is hypothesized that the damaged visual cortex itself is the structure in which recovery takes place.</p

    Growth Rules for the Repair of Asynchronous Irregular Neuronal Networks after Peripheral Lesions

    Get PDF
    Β© 2021 Sinha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/Several homeostatic mechanisms enable the brain to maintain desired levels of neuronal activity. One of these, homeostatic structural plasticity, has been reported to restore activity in networks disrupted by peripheral lesions by altering their neuronal connectivity. While multiple lesion experiments have studied the changes in neurite morphology that underlie modifications of synapses in these networks, the underlying mechanisms that drive these changes are yet to be explained. Evidence suggests that neuronal activity modulates neurite morphology and may stimulate neurites to selective sprout or retract to restore network activity levels. We developed a new spiking network model of peripheral lesioning and accurately reproduced the characteristics of network repair after deafferentation that are reported in experiments to study the activity dependent growth regimes of neurites. To ensure that our simulations closely resemble the behaviour of networks in the brain, we model deafferentation in a biologically realistic balanced network model that exhibits low frequency Asynchronous Irregular (AI) activity as observed in cerebral cortex. Our simulation results indicate that the re-establishment of activity in neurons both within and outside the deprived region, the Lesion Projection Zone (LPZ), requires opposite activity dependent growth rules for excitatory and inhibitory post-synaptic elements. Analysis of these growth regimes indicates that they also contribute to the maintenance of activity levels in individual neurons. Furthermore, in our model, the directional formation of synapses that is observed in experiments requires that pre-synaptic excitatory and inhibitory elements also follow opposite growth rules. Lastly, we observe that our proposed structural plasticity growth rules and the inhibitory synaptic plasticity mechanism that also balances our AI network both contribute to the restoration of the network to pre-deafferentation stable activity levels.Peer reviewe

    Short-term variations in response distribution to cortical stimulation

    Get PDF
    Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change occurring at a given location with stimulation would help predict the distribution of responses elsewhere over the cortex to stimulation at that given location. We did this by studying cortical afterdischarges following electrical stimulation of the cortex in awake humans undergoing evaluations for brain surgery. Response occurrence and location could change within seconds, both nearby to and distant from stimulation sites. Responses might occur at a given location during one trial but not the next. They could occur at electrodes adjacent or not adjacent to those directly stimulated or to other electrodes showing afterdischarges. The likelihood of an afterdischarge at an individual site after stimulation was predicted by spontaneous electroencephalographic activity at that specific site just prior to stimulation, but not by overall cortical activity. When stimulation at a site interrupted motor, sensory or language function, afterdischarges were more likely to occur at other sites where stimulation interrupted similar functions. These results show that widespread dynamic changes in cortical responses can occur in intact cortex within short periods of time, and that the distribution of these responses depends on local brain states and functional brain architecture at the time of stimulation. Similar rapid variations may occur during normal intracortical communication and may underlie changes in the cortical organization of function. Possibly these variations, and the occurrence and distribution of responses to cortical stimulation, could be predicted. If so, interventions such as stimulation might be used to alter spread of epileptogenic activity, accelerate learning or enhance cortical reorganization after brain injury

    Memory and meaning in the search for Chinese Australian families

    Get PDF
    Over the past twenty-five years there has been tremendous interest in researching ChineseAustralian family history. This includes documenting the experiences of Chinese migrantsand their descendants in Australia from the nineteenth century onwards, as well as seekingto understand their pre-migration lives in China and patterns of return migration. For manyChinese Australian family historians, however, there remains a major difficulty in tracingtheir Chinese ancestry – not knowing their ancestor’s name in Chinese or their precise placeof origin beyond the ubiquitous β€˜Canton’. This essay discusses the endeavours of familyhistorians to uncover their Cantonese roots, including by visiting the qiaoxiang (homevillage) districts of the Pearl River Delta region in Guangdong province. We reflect on thisβ€˜roots tourism’ and the practice of personal memory-making in the wake of national andfamilial forgetting

    A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey

    Get PDF
    The representation of navigational optic flow across the inferior parietal lobule was assessed using optical imaging of intrinsic signals in behaving monkeys. The exposed cortex, corresponding to the dorsal-most portion of areas 7a and dorsal prelunate (DP), was imaged in two hemispheres of two rhesus monkeys. The monkeys actively attended to changes in motion stimuli while fixating. Radial expansion and contraction, and rotation clockwise and counter-clockwise optic flow stimuli were presented concentric to the fixation point at two angles of gaze to assess the interrelationship between the eye position and optic flow signal. The cortical response depended upon the type of flow and was modulated by eye position. The optic flow selectivity was embedded in a patchy architecture within the gain field architecture. All four optic flow stimuli tested were represented in areas 7a and DP. The location of the patches varied across days. However the spatial periodicity of the patches remained constant across days at ∼950 and 1100 ¡m for the two animals examined. These optical recordings agree with previous electrophysiological studies of area 7a, and provide new evidence for flow selectivity in DP and a fine scale description of its cortical topography. That the functional architectures for optic flow can change over time was unexpected. These and earlier results also from inferior parietal lobule support the inclusion of both static and dynamic functional architectures that define association cortical areas and ultimately support complex cognitive function
    • …
    corecore