155 research outputs found

    Blast in Context: The Neuropsychological and Neurocognitive Effects of Long-Term Occupational Exposure to Repeated Low-Level Explosives on Canadian Armed Forces\u27 Breaching Instructors and Range Staff

    Get PDF
    Currently, there is strong interest within the military to better understand the effects of long-term occupational exposure to repeated low-level blast on health and performance. To gain traction on the chronic sequelae of blast, we focused on breaching—a tactical technique for gaining entry into closed/blocked spaces by placing explosives and maintaining a calculated safe distance from the detonation. Using a cross-sectional design, we compared the neuropsychological and neurocognitive profiles of breaching instructors and range staff to sex- and age-matched Canadian Armed Forces (CAF) controls. Univariate tests demonstrated that breaching was associated with greater post-concussive symptoms (Rivermead Post Concussion Symptoms Questionnaire) and lower levels of energy (RAND SF-36). In addition, breaching instructors and range staff were slower on a test that requires moving and thinking simultaneously (i.e., cognitive-motor integration). Next, using a multivariate approach, we explored the impact of other possible sources of injury, including concussion and prior war-zone deployment on the same outcomes. Concussion history was associated with higher post-concussive scores and musculoskeletal problems, whereas deployment was associated with higher post-concussive scores, but lower energy and greater PTSD symptomatology (using PCL-5). Our results indicate that although breaching, concussion, and deployment were similarly correlated with greater post-concussive symptoms, concussion history appears to be uniquely associated with altered musculoskeletal function, whereas deployment history appears to be uniquely associated with lower energy and risk of PTSD. We argue that the broader injury context must, therefore, be considered when studying the impact of repetitive low-level explosives on health and performance in military members

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p

    New Trends in Beverage Packaging Systems: A Review

    Get PDF
    New trends in beverage packaging are focusing on the structure modification of packaging materials and the development of new active and/or intelligent systems, which can interact with the product or its environment, improving the conservation of beverages, such as wine, juice or beer, customer acceptability, and food security. In this paper, the main nutritional and organoleptic degradation processes of beverages, such as oxidative degradation or changes in the aromatic profiles, which influence their color and volatile composition are summarized. Finally, the description of the current situation of beverage packaging materials and new possible, emerging strategies to overcome some of the pending issues are discussed

    Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    Get PDF
    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides
    • …
    corecore