3,469 research outputs found
Calculated tissue current-to-dose conversion factors for nucleons below 400 mev
Monte Carlo computer program for calculation of energy deposition from high incident nucleons as function of tissue slab dept
Opportunity for All: How the American Public Benefits From Internet Access at U.S. Libraries
Examines the use of free computer and Internet access in public libraries, by income level, age, race/ethnicity, and online activity. Explores libraries' role as a community resource for social media, education, employment, e-government, and other areas
Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)
The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations
A Hamilton-Jacobi approach to non-slow-roll inflation
I describe a general approach to characterizing cosmological inflation
outside the standard slow-roll approximation, based on the Hamilton-Jacobi
formulation of scalar field dynamics. The basic idea is to view the equation of
state of the scalar field matter as the fundamental dynamical variable, as
opposed to the field value or the expansion rate. I discuss how to formulate
the equations of motion for scalar and tensor fluctuations in situations where
the assumption of slow roll is not valid. I apply the general results to the
simple case of inflation from an ``inverted'' polynomial potential, and to the
more complicated case of hybrid inflation.Comment: 21 pages, RevTeX (minor revisions to match published version
A Fermi Surface Model for Large Supersymmetric AdS_5 Black Holes
We identify a large family of 1/16 BPS operators in N=4 SYM that
qualitatively reproduce the relations between charge, angular momentum and
entropy in regular supersymmetric AdS_5 black holes when the main contribution
to their masses is given by their angular momentum.Comment: 32 pages, 6 figures, LaTeX uses JHEP3 class; ver 2- added
acknowledgment, minor change
General conditions for scale-invariant perturbations in an expanding universe
We investigate the general properties of expanding cosmological models which
generate scale-invariant curvature perturbations in the presence of a variable
speed of sound. We show that in an expanding universe, generation of a
super-Hubble, nearly scale-invariant spectrum of perturbations over a range of
wavelengths consistent with observation requires at least one of three
conditions: (1) accelerating expansion, (2) a speed of sound faster than the
speed of light, or (3) super-Planckian energy density.Comment: 4 pages, RevTe
The scalar bi-spectrum during preheating in single field inflationary models
In single field inflationary models, preheating refers to the phase that
immediately follows inflation, but precedes the epoch of reheating. During this
phase, the inflaton typically oscillates at the bottom of its potential and
gradually transfers its energy to radiation. At the same time, the amplitude of
the fields coupled to the inflaton may undergo parametric resonance and, as a
consequence, explosive particle production can take place. A priori, these
phenomena could lead to an amplification of the super-Hubble scale curvature
perturbations which, in turn, would modify the standard inflationary
predictions. However, remarkably, it has been shown that, although the
Mukhanov-Sasaki variable does undergo narrow parametric instability during
preheating, the amplitude of the corresponding super-Hubble curvature
perturbations remain constant. Therefore, in single field models, metric
preheating does not affect the power spectrum of the large scale perturbations.
In this article, we investigate the corresponding effect on the scalar
bi-spectrum. Using the Maldacena's formalism, we analytically show that, for
modes of cosmological interest, the contributions to the scalar bi-spectrum as
the curvature perturbations evolve on super-Hubble scales during preheating is
completely negligible. Specifically, we illustrate that, certain terms in the
third order action governing the curvature perturbations which may naively be
expected to contribute significantly are exactly canceled by other
contributions to the bi-spectrum. We corroborate selected analytical results by
numerical investigations. We conclude with a brief discussion of the results we
have obtained.Comment: v1: 15 pages, 4 figures; v2: 15 pages, 4 figures, discussion and
references added, to appear in Phys. Rev.
Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity
We present a second-order gauge-invariant formalism to study the evolution of
curvature perturbations in a Friedmann-Robertson-Walker universe filled by
multiple interacting fluids. We apply such a general formalism to describe the
evolution of the second-order curvature perturbations in the standard
one-single field inflation, in the curvaton and in the inhomogeneous reheating
scenarios for the generation of the cosmological perturbations. Moreover, we
provide the exact expression for the second-order temperature anisotropies on
large scales, including second-order gravitational effects and extend the
well-known formula for the Sachs-Wolfe effect at linear order. Our findings
clarify what is the exact non-linearity parameter f_NL entering in the
determination of higher-order statistics such as the bispectrum of Cosmic
Microwave Background temperature anisotropies. Finally, we compute the level of
non-Gaussianity in each scenario for the creation of cosmological
perturbations.Comment: 14 pages, LaTeX file. Further comments adde
Astrophysical Constraints on Modifying Gravity at Large Distances
Recently, several interesting proposals were made modifying the law of
gravity on large scales, within a sensible relativistic formulation. This
allows a precise formulation of the idea that such a modification might account
for galaxy rotation curves, instead of the usual interpretation of these curves
as evidence for dark matter. We here summarize several observational
constraints which any such modification must satisfy, and which we believe make
more challenging any interpretation of galaxy rotation curves in terms of new
gravitational physics.Comment: References added, submitted to Classical & Quantum Gravit
Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models
Motivated by a real-life problem of sharing social network data that contain
sensitive personal information, we propose a novel approach to release and
analyze synthetic graphs in order to protect privacy of individual
relationships captured by the social network while maintaining the validity of
statistical results. A case study using a version of the Enron e-mail corpus
dataset demonstrates the application and usefulness of the proposed techniques
in solving the challenging problem of maintaining privacy \emph{and} supporting
open access to network data to ensure reproducibility of existing studies and
discovering new scientific insights that can be obtained by analyzing such
data. We use a simple yet effective randomized response mechanism to generate
synthetic networks under -edge differential privacy, and then use
likelihood based inference for missing data and Markov chain Monte Carlo
techniques to fit exponential-family random graph models to the generated
synthetic networks.Comment: Updated, 39 page
- …
