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Sharing Social Network Data: Differentially Private Esti-

mation of Exponential-Family Random Graph Models

Vishesh Karwa

Pavel N. Krivitsky

Aleksandra B. Slavković

Summary. Motivated by a real-life problem of sharing social network data that contain

sensitive personal information, we propose a novel approach to release and analyze syn-

thetic graphs in order to protect privacy of individual relationships captured by the social

network while maintaining the validity of statistical results. A case study using a ver-

sion of the Enron e-mail corpus dataset demonstrates the application and usefulness of

the proposed techniques in solving the challenging problem of maintaining privacy and

supporting open access to network data to ensure reproducibility of existing studies and

discovering new scientific insights that can be obtained by analyzing such data. We use

a simple yet effective randomized response mechanism to generate synthetic networks

under ε-edge differential privacy, and then use likelihood based inference for missing data

and Markov chain Monte Carlo techniques to fit exponential-family random graph models

to the generated synthetic networks.

Keywords: Enron e-mail corpus, ERGM, differential privacy, missing data, ran-

domized response, synthetic graphs

1. Introduction

Networks are a natural way to summarize and model relationship information among

entities such as individuals or organizations. Entities are represented as nodes, the

relation between them as edges and the attributes of the entities as covariates. Such a

network representation has become a prominent source of scientific inquiry for researchers

in economics, epidemiology, sociology and many other disciplines. However, network

data very often contain sensitive relational information (e.g., sexual relationships, email
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exchanges, financial transactions), while the covariate information can, in some cases, be

assumed to be safe to release. The social benefits of analyzing such data are significant,

but any privacy breach of the relational information can cause public shame and even

economic harm to the individuals and organizations involved. With the increase in the

quantity of data being collected and stored, such privacy risks are bound to increase.

In tension with privacy issues is the need to allow open access to data to ensure

reproducibility of existing studies and to discover new scientific insights that can be

obtained by reanalyzing such data. As a concrete example of this tension, consider

the famous National Longitudinal Study of Adolescent to Adult Health (Add Health)

(Harris et al., 2003). Most of the data collected on individuals (nodes) are available to

researchers subject to some confidentiality constraints and security requirements, e.g.,

as the Restricted-Use data (see Add Health (2009a)). Also collected were Romantic

Pairs (relational) data (see Add Health (2009b)), analyzed by Bearman et al. (2004),

for example. The constraints and the requirements on the relational data are far more

severe: the former is shared on a project-by-project basis, with review and renewal

every three years, and can be held on a networked server, while the latter is shared

with only one researcher at a time, subject to review every year, and must be held on

a computer system physically isolated from any computing networks. In other words,

individual node level data – even Restricted-Use – is far easier to obtain and analyze

than relational data.

In this paper, we consider the problem of limiting disclosure risk of relational informa-

tion while allowing for statistical inference on networks in the context of three real-world

network datasets, with primary focus on Enron e-mail exchanges network. We propose

a method to release differentially private synthetic networks and evaluate the utility of

fitting exponential random graph models using a missing data likelihood method.

Over the past decade, the Enron e-mail corpus (Klimt and Yang, 2004), comprising

the e-mail correspondence among 158 employees of Enron Corporation between 1998 and

2002, has become a classic dataset in the area of text mining and analysis, and social

network analysis. A big reason for its popularity is its uniqueness: no other lawfully

obtained network data on corporate communications of this completeness and scale is
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available to researchers without severe restrictions. This is because such communications

are often considered highly sensitive – even more so than individual-level attributes such

as gender, department, and position, which are often public information or nearly so

from corporate web sites, disclosures to regulators, the employees’ own online public

profiles (e.g., Facebook or LinkedIn), or court filings when cases like Enron’s do occur.

Who works for a company and in what official capacity is often much less sensitive

than their communications, particularly the content, but also the “metadata” of who

communicated with whom and how often. Enron data release comes from an era when

privacy implications of such disclosure were only beginning to be appreciated, and it is

likely that if a similar scandal were to take place today, the participants would likewise

be publicly identified, but the correspondence would not be publicly disclosed.

We therefore use Enron network as our primary case study of a network dataset

whose actor-level information would, in the ordinary course of things, be fairly public, but

whose patterns of communications would be sensitive and therefore subject to controlled

disclosure. In addition, we study two publicly available datasets and report on those

in the online supplement (Karwa et al., 2016): A teenage friendship and substance use

network formed from the data collected in the Teenage Friends and Lifestyle Study

(Michell and Amos, 1997; Pearson and Michell, 2000) for a cohort of students in a school

in Scotland, and a network formed from the collaborative working relations between

partners in a New England law firm (Lazega, 2001).

2. Contributions of this study in relation to previous work

Limiting the disclosure risk while allowing for the data to remain useful has been the sub-

ject of many studies in statistics and data mining, and numerous techniques have been

developed in the fields of statistical disclosure limitation (SDL) and privacy-preserving

data mining, albeit with a limited focus on network data. For a survey on SDL methods

which focus on statistical methodology to address this inherent trade-off, see for example,

Fienberg and Slavković (2010) and Hundepool et al. (2012). A drawback of these tech-

niques is that in most cases they do not offer any formal privacy guarantees – whether

or not a disclosure technique makes the data “safe” to release is left to the subjective
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decision of data curator and the risk is highly dependent on the assumed knowledge

of what additional information the potential intruder may have. Due to this, “naive”

privacy-preserving methods, such as anonymization (removing the basic identifiers such

as name, social security number, etc.) have been shown to fail and can lead to disclosure

of individual relationships or characteristics associated with the released network (e.g.,

see Narayanan and Shmatikov (2009); Backstrom et al. (2007)). To overcome this risk,

one needs a principled and formal way to reason about how to measure and limit the

privacy risks of data release mechanisms over multiple data releases.

The framework of differential privacy (DP) (Dwork et al., 2006) has emerged from

the theoretical computer science community as a principled way to provably limit a worst

case disclosure risk in presence of any arbitrary external information. While disclosure

risk has long been a subject of study and quantified in SDL, the DP risk is the first

one that composes: the cumulative risk can be controlled over multiple data releases

and it allows for a modular design of data release mechanisms. A significant amount of

work on DP has been undertaken in theoretical computer science, and some in statistics,

showing that any data release method that satisfies DP comes with strong worst-case

privacy guarantees. We use it to meet the goal of sharing social network data, in the

form of synthetic networks, while protecting the privacy of individual relationships. Edge

Differential Privacy (EDP), in particular, considers the worst-case risk of the state of

a relationship between any two individuals in the network being exposed. However,

a common criticism of DP is that it may be too strong of a guarantee for statistical

applications and more importantly, the primary focus of DP-based techniques is on

releasing summary statistics of the data, as opposed to performing statistical inference.

To address the utility issue, we adopt ideas and techniques from missing data meth-

ods to ensure that one can perform valid statistical inference on differentially private

synthetic networks. We focus on Exponential-Family Random Graph Models (ERGMs)

(Hunter et al., 2008), because they have become the essential tool for analyzing social

network data (Goodreau et al., 2009; Robins et al., 2007; Goldenberg et al., 2010). The

current DP methods for network data are primarily focused on releasing noisy sufficient

statistics of ERGMs, but fall short of demonstrating how to perform valid statistical
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inference using the noisy statistics. For example, Hay et al. (2009) propose an algo-

rithm for releasing the degree distribution of a graph using the Laplace noise-addition

mechanism along with post-processing techniques to reduce the L2 error between the

true and the released degree distribution. Karwa et al. (2011) release subgraph counts

such as number of k-triangles and k-stars by adding noise using the smooth sensitiv-

ity framework of Nissim et al. (2007). Parameter estimation using such noisy sufficient

statistics is a non-trivial task, as discussed and demonstrated in the context of a class of

ERGMs known as the β-model by Karwa and Slavković (2012, 2015), and by Fienberg

et al. (2010) in the context of non-existence of maximum likelihood estimators (MLEs)

of log-linear models of contingency tables.

Ignoring the noise addition process, which is often done in the case of private release

of summary statistics or synthetic data, can lead to inconsistent and biased estimates –

as already well established in the statistics literature on the measurement error models,

e.g., see Carroll et al. (2012). Motivated by the latter, Karwa and Slavković (2015)

take the noise addition process into consideration and construct a differentially private

asymptotically normal and consistent estimator of the β-model to achieve valid inference.

However, the main technique that relies on projecting the noisy sufficient statistics onto

the lattice points of the marginal polytope corresponding to the β-model does not scale

well to more general ERGMs. Lu and Miklau (2014) propose to release perturbed ERGM

sufficient statistics for the model of interest and propose a Bayesian exchange algorithm

for recovering parameters from it. Karwa et al. (2014) were first to develop techniques

for fitting and estimating a wide class of ERGMs in a differentially private manner

by considering the original private network as missing, and taking a likelihood-based

approach to ERGM inference from data released by privacy-preserving mechanisms.

In this paper, we expand on the work of Karwa et al. (2014), by improving both

the methodology and the results, to address the above-described problem of limiting

disclosure risk of relational information while allowing for statistical inference in the

context of three real-world network datasets. We assume that the covariate information

of the nodes is public, while the relational information is sensitive and requires protec-

tion. Our goal is to release synthetic versions of the networks ensuring strong privacy
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protection of the relational information while any statistical analyses can be performed

on the synthetic datasets without sacrificing utility.

We use the framework of ERGMs for measuring utility and EDP framework for mea-

suring disclosure risk. Directly applying EDP to real-world data exposes its limitations,

and we propose to address them by varying privacy risks for potential relations (dyads)

depending on the attributes of the nodes they connect. Finally, but crucially, we use

missing data methods to perform valid inference based on these synthetic networks,

allowing users to fit any ERGM to the disclosed data and quantify uncertainty in pa-

rameter estimates, including that introduced by the privacy mechanism. We combine

ideas and methods from the computer sciences and the statistics to simultaneously offer

rigorous privacy guarantees and analytic validity. More specifically, the following are the

novel contributions of this paper:

(a) Motivated by the lack of utility in analyses of the Teenage Friendship data in Karwa

et al. (2014), in Section 3 we present a generalized randomized response mechanism

to release synthetic networks under ε-edge differential privacy.

The new mechanism can handle directed graphs and allows for different levels of

privacy risk for different types of dyads depending on the potential sensitivity of

the connections, based on the nodal attributes.

(b) The Randomized Response mechanism for sharing network data is thoroughly an-

alyzed both theoretically and in the case studies, specifically from an applied point

of view. In Section 4, Lemma 2, we analyze the optimal parameters of the gen-

eralized randomized response mechanism introduced in the current paper. This

analysis brings forth a very important limitation – Measuring disclosure risk by

worst case (as in EDP) is oblivious to any asymmetry that one may wish to assign

in the privacy risks. In particular, EDP does not recognize asymmetric disclosure

risks to edges and non-edges or different types of edges (e.g., edges between the

same gender vs different genders in a sexual network).

(c) We present an alternate privacy-preserving method that aims at overcoming this

limitation of differential privacy and allows for different disclosure risks for different

types of dyads. We use the Enron data as a case study of this new scheme to show
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that it performs better in terms of utility.

(d) In Section 5, we present improved MCMC algorithm used in Karwa et al. (2014).

The new MCMC algorithm is based on the two-MCMC approach of Handcock et al.

(2010) and is modified to handle the generalized randomized response mechanism.

The rest of the paper is organized as follows. In Section 3, we introduce differen-

tial privacy and the randomized response mechanism used to release the networks. In

Section 4 we study the risk-utility tradeoff. In Section 5, we develop MCMC based

likelihood inference procedures to analyze networks released by the differentially pri-

vate mechanism. In Section 6, we present the Enron case study; additional case studies

are presented in the supplementary material (Karwa et al., 2016). These case studies

demonstrate the application and usefulness of the proposed techniques in solving the

challenging problem of maintaining privacy and supporting open access to network data

to ensure reproducibility of existing studies and discovering new scientific insights that

can be obtained by analyzing such data. In Section 7 we discuss overall ramifications of

data sharing under privacy constraints and some future directions.

3. Differential privacy for networks and Randomized response

In this section we set up the notation and propose a generalized randomized response

mechanism with edge differential privacy (EDP), which measures the worst case risk of

identifying any relationship when data are released in the form of a synthetic network.

Let X be a random graph with n nodes and m edges, represented by its adjacency

matrix. The adjacency matrix is a binary n× n matrix with zeros on its diagonal, such

that xij = 1 if there is an edge from node i to node j, 0 if there is no edge, or non-edge

between nodes i and j. We focus on graphs with no self-loops or multiplicitous edges,

and our discussion applies equally to directed and undirected, as well as unipartite and

bipartite (affiliation) graphs. Let X denote the set of all possible graphs of interest on

n nodes. The distance between two graphs X and X ′, is defined as the number of edges

on which the graphs differ and is denoted by ∆(X,X ′).

Each node can have a set of p attributes associated with it. These attributes can be

collected in the form of a n× p matrix of covariates Z. We assume that the matrix Z is
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known and public or has been released using an independent data release mechanism.

We are interested in protecting the relationship information in the network X, so we

randomize the response to each dyad (potential tie) of the adjacency matrix of X.

3.1. Interactive Data Access versus Releasing Synthetic Networks

Differential privacy (DP) framework (Dwork et al., 2006) is designed to capture the

worst-case risk of releasing sensitive data, and is defined with an eye towards interactive

data access with focus on releasing summary statistics. The data x (e.g., an observed

network) is stored with a curator and the analyst requests summary statistics g(x) and

receives noisy answers. Such process is repeated – each time the user requires access to

the data, she has to interact with the curator. This is an output perturbation type algo-

rithm which works by adding noise calibrated to the sensitivity of the sufficient statistic,

which is a measure of change in g(x) over neighboring networks. The goal is to mask

large changes in g(x) as x changes over neighboring networks. In an interactive setting,

the loss in privacy accumulates over time and the amount of noise added increases.

Non-interactive access provides an alternative approach to data sharing. In this set-

ting, for example, by perturbing x directly, the data curator may release one or more

synthetic datasets (e.g., synthetic networks). This is an example of input perturba-

tion algorithm. While in both cases of input and output perturbation, the perturbing

mechanism is known publicly, one advantage of having access to synthetic dataset(s) is

the support for more varied data analyses, typically greater than those only relying on

the few sufficient statistics, that can be carried out by the analyst using the synthetic

dataset(s) without interacting with the curator. On the other hand the dimension of

g(x) is usually much smaller than that of x, which may mean that to achieve the same

level of disclosure, each element of x requires more noise than each element of g(x).

Laplace mechanism (Dwork et al., 2006) is a basic DP output perturbation mechanism

for releasing any summary statistic g(x). It works by adding Laplace noise to g(x)

proportional to its global sensitivity, which is the maximum change in g over neighboring

networks. Let g(x) be the number of edges in the network; the global sensitivity of g(x)

is 1, since adding or removing a single edge changes the edge count by 1. For a non-
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trivial example, let g(x) count the number of triangles. The global sensitivity in this

case is O(n2) and thus very large. As an alternative mechanism, one can also add noise

proportional to the so called smooth version of local sensitivity (Karwa et al., 2011).

Output perturbation mechanisms that release noisy summary statistics are not suit-

able for releasing synthetic graphs for estimating a large class of ERGMs for three major

reasons. First, the set of sufficient statistics released by the curator defines the space

of models that can be estimated. Thus, the models (and substantive questions) not

anticipated by the curator cannot be fitted. Second, the noisy summary statistics are

typically no longer sufficient (ancillary statistics can now provide some information about

the network) and typically not usable for estimating model parameters and performing

statistical inference, e.g., see Fienberg et al. (2010); Karwa and Slavković (2012). Third,

the curator needs to design mechanisms for sufficient statistics (including estimating

their sensitivity) on a case by case basis, which puts a considerable and possibly an in-

surmountable burden on the curator: calculating the smooth sensitivity of many network

summary statistics is NP hard (Karwa et al., 2011). To avoid these issues, we propose

using an input perturbation mechanism to release synthetic networks that satisfy DP.

Randomized response is one of the simplest examples of an input perturbation that

would allow for release of synthetic data, where the input data x are perturbed by a

known probability distribution. A more commonly used method for releasing synthetic

data is for the curator to fit a model to the data and release samples from the fitted

model; there is an extensive literature on this topic, e.g., Raghunathan et al. (2003),

Reiter (2003), Kinney and Reiter (2010), Slavković and Lee (2010), Drechsler (2011),

Raab et al. (2016). Because the synthetic data only embodies structure in the curator’s

model, this, once again, requires the curator to anticipate all possible models the user

of the data might want to fit. Performing model selection to choose a good model,

estimating its parameters and releasing synthetic data under the additional requirements

of DP largely remains an open problem, especially in the context of network data.

We propose a randomized response scheme for perturbing the edges and non-edges of

the network to generate a collection of synthetic edges, without relying on a model, while

satisfying DP to control the risk. Randomized response originated in survey methodology
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and has been used extensively to obtain answers to sensitive questions (Chaudhuri, 1987).

Randomized response has also been used for statistical disclosure control when releasing

data in the form of contingency tables (Hout and van der Heijden, 2002), and, in fact, in

the context of contingency tables, it has been shown that randomized response satisfies

a much stronger notion of privacy called Local Differential Privacy (Duchi et al., 2013).

3.2. Randomized Response for networks with Edge Differential Privacy

Edge differential privacy (EDP) is defined to measure the worst case disclosure risk

of identifying any relationship (represented by edges) between entities (represented by

nodes). Consider that any privacy-preserving mechanism can be modeled as a family

of conditional probability distributions, which we denote by Pγ(Y = y|X = x). Here,

x is the network that requires privacy protection, Y is the random synthetic network

obtained by sampling from this distribution, and γ is a (vector) parameter of the privacy

mechanism controlling the generation of Y from x, which we assume is fixed and known.

Let x and x′ be any two neighboring networks (i.e., they differ by one edge). EDP

bounds the worst case ratio of the likelihoods of Y conditional on x and x′. More

precisely, the mechanism Pγ(Y = y|X = x) is ε-edge-differentially private if, and only if,

max
y

max
x,x′:∆(x,x′)=1

log
Pγ(Y = y|X = x)

Pγ(Y = y|X = x′)
≤ ε.

EDP requires that the distribution of data release mechanism on two neighboring net-

works should be close to each other. The parameter ε controls the amount of information

leakage and measures the disclosure risk; smaller values of ε lead to lower information

leakage and hence provide stronger privacy protection. One can show that even if an

adversary knows all but one edge in the network, DP ensures that the adversary cannot

accurately test the existence of the unknown edge. Wasserman and Zhou (2010) for-

malize this property using the notion of a hypothesis test and their result implies that

there exist no hypothesis test that has any power to detect the presence (or absence) of

any unknown edge, even if the adversary knows all the other edges. Another key prop-

erty of DP is that any function of a differentially private algorithm is also differentially

private without any loss in the disclosure risk, as measured by ε (Dwork et al., 2006;

Nissim et al., 2007), a result we reproduce below as Lemma 1. This allows us to perform
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any kind of post-processing on the output of a differentially private mechanism without

compromising the privacy and is a key requirement in the success of our methods.

Lemma 1 (Post-processing Dwork et al. (2006); Nissim et al. (2007)). Let

f be an output of an ε differentially private algorithm applied to a graph X and g be any

function whose domain is the range of f . Then g(f(X)) is also ε-differentially private.

Consider a graph with a collection of labeled nodes and dyads that represent the

ties between each nodes. We apply randomized response to each dyad of the adjacency

matrix of X. More specifically, for each dyad (i, j) let pij be the probability that the

mechanism retains an edge if present, and qij be the probability that the mechanism

retains a non-edge. Algorithm 1 shows how to release a random graph Y from X that

is ε-edge differentially private. Note that for an undirected graph, we need to release

n(n− 1)/2 binary dyads and for a directed graph, n(n− 1).

Algorithm 1 Dyadwise randomized response.

1: Let x = {xij} be the adjacency matrix of X

2: for each dyad xij do

3: if xij = 1 then

4: Let yij =

1 with probability pij

0 otherwise

5: else

6: Let yij =

1 with probability 1− qij

0 otherwise

7: end if

8: Let Yi,j = {yij}.

9: end for

10: return Y

We assume that the parameters of Algorithm 1 are public, i.e., the matrix of values

of pij and qij ’s are known, otherwise the parameters of any model to be estimated from

the released network will not be identifiable. This does not increase the privacy risks

as the privacy protection comes from the randomness inherent in the mechanism and

not in the secrecy of the parameters of the mechanism. The privacy risk of each dyad
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is measured by εij and the worst case risk over all dyads is ε. Proposition 1 shows that

Algorithm 1 is ε-differentially private.

Proposition 1. Let the privacy risk of each dyad i, j be

εij = log max

{
qij

1− pij
,
1− pij
qij

,
1− qij
pij

,
pij

1− qij

}
.

Algorithm 1 is ε-edge differentially private with ε = maxij εij .

Proof Consider two networks x and x′ that differ by one edge, say kl. Let Y be the

output of Algorithm 1.

Pγ(Y = y|X = x)

Pγ(Y = y|X = x′)
=

∏
ij P (Yij |Xij)∏
ij P (Yij |X ′ij)

=
P (ykl|xkl)
P (ykl|x′kl)

=
P (ykl|xkl)

P (ykl|1− xkl)

Note that P (ykl|xkl = 1) = pyklij (1− pij)1−ykl and P (ykl|xkl = 0) = (1− qij)yklq1−ykl
ij . The

only possible values of ykl are 0 or 1. Thus with some algebra, the max over all outputs

is obtained by max
{

qij
1−pij ,

1−pij
qij

, 1−qij
pij

, pij
1−qij

}
which completes the proof. 2

For any dyad (i, j), if pij or qij is equal to 1 or 0 we obtain ε =∞, which in the EDP

model represents infinite risk (i.e., no privacy). Hence, to obtain finite privacy risks,

no dyad can be left unperturbed: every dyad must have a positive probability of being

perturbed. On the other hand if for all dyads, pij = qij = 0.5, then ε = 0. This setting

of parameters has 0 risk and provides the maximum possible privacy protection, but it

also has 0 utility, as all the information in the original network is lost and there is no

identifiability. We obtain a range of ε from 0 to∞ for intermediate values of pij and qij .

4. The Risk–Utility Trade-off

4.1. Optimal Randomized Response parameters and a limitation of the worst-case

risk measure

Recall, the privacy risk of each dyad is measured by εij and the worst-case risk is mea-

sured by ε. Larger values of εij (ε) correspond to higher privacy risk for each dyad

(higher worst-case risk). In the randomized response mechanism, there are infinitely

many values of pij and qij that are equivalent to a fixed risk εij . Thus, for a fixed value

of εij , what are the optimal values of pij and qij? That is, for a fixed value of risk,
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is there a pair of (pij , qij) that is better for utility? The answer depends on how we

measure utility. We want to ensure that each released dyad Yij be close to Xij with high

probability. This is equivalent to requiring pij and qij to be as close to 1 as possible.

The region of feasible values of pij and qij for a fixed εij is a rhombus described in

Proposition 2, which is easily verified. The optimum occurs at one of the corners, i.e.,

the corner when pij = qij . Thus, for each dyad (i, j), we choose pij = qij = 1 − πij =

eεij/(1 + eεij ). This gives us εij = log (1−πij)
πij

.

Proposition 2. Let εij be fixed, then the region of feasible values for pij and qij is

given by a rhombus defined by LB(pij) ≤ qij ≤ UB(pij) with

LB(pij) =

1− eεijpij if 0 < pij <
1

1+eεij

e−εij (1− pij) if 1
1+eεij < pij < 1

,

UB(pij) =

1− e−εijpij if 0 < pij <
eεij
1+eε

eεij (1− pij) if eεij
1+eεij < pij < 1

.

The above result reveals an important limitation of measuring risk by the worst-case,

as is done in DP, which is that the overall risk ε is always measured by the worst-case

risk no matter if there maybe different risks for edges. Consider a situation where the

risk of revealing the existence of an edge is more harmful than the non-existence of an

edge. For instance, in a sexual partnership network, exposing a relationship between two

individuals can be far more harmful than exposing that there is no relationship between

them. However, DP does not recognize such a differential risk assigned to edges and

non-edges: if the risk is measured by εij , then the optimal choice is to set pij = qij .

Another situation where asymmetric risks may be useful, but DP focuses only on the

overall risk, is when exposure of edges between certain types of nodes are considered

more harmful than others; for example, in a sexual partnership network, edges between

nodes of same sex may be more harmful than edges between nodes of different sex. This

can be operationalized by setting different εij levels for different pairs (i, j), but, per

Proposition 1, ε = maxij εij , so to maintain a specific level of differential privacy every

potential relationship must be treated as equally sensitive.
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A justification often given for the requirement of measuring risk by worst-case in DP

is that it allows for composition as described in Section 2: the risk cumulates over many

different data releases in a controlled and predictable fashion (Dwork et al., 2006). The

claim is that any non-worst case measure of risk may not compose in such a manner, but

this is yet to be proven. Moreover, we are typically interested in releasing a small subset

of synthetic networks for public use that would allow a wider range of statistical analysis

than interactive data releases, thus limiting many more future data releases from the

same dataset that could lead to quicker accumulation of overall risk.

4.2. Beyond Worst-Case Risk

The worst-case privacy risk of Algorithm 1, since it satisfies EDP, as measured by ε is

determined by the most “revealing” dyad (i, j), i.e., any dyad (i∗, j∗) that achieves the

maximum, has the highest εij in Proposition 1. On the other hand, with our method, if

we deem the disclosure of one set of dyads to be more harming than other, we can define

a different risk measure for groups of dyads by specifying different values of ε for such

groups. Consider partitioning the nodes into K groups labeled by k = 1, . . . ,K. We can

limit the privacy risk of dyads between nodes of groups ki and kj by specifying a K×K

matrix of ε values. The (ki, kj) entry of this matrix specifies the maximum tolerable

privacy risk of dyads between nodes in group ki and kj . The worst-case risk will still be

determined by the maximum of all the εki,kj . The key point here is that having only a

one number risk summary may not always be helpful, and one must be able to design

mechanisms with different risks for different groups which is what we are able to do.

In practice, it may be acceptable to increase the risk of some dyads while decreasing

the risk of others, in order to obtain more utility. It is important to note that the

choice of risk should depend only on publicly available information. The choice of risk

cannot depend on the existence of an edge in the network or the total number of edges

between a group of nodes, but as in our framework, can depend on the attributes of the

nodes as this information is assumed to be public. For example, one may deem that the

re-identification of ties between nodes of same gender in a sexual network to be more

devastating to the participants when compared to ties between different gender. In such

a case, we may assign a lower value of ε (lower risk) for dyads between nodes of same
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sex, and a higher value of ε for all other dyads. Note that the overall worst-case risk is

still determined by the largest ε, but this setup allows one to take different risks into

account. We use this strategy in the Enron e-mail case study in Section 6.

5. Likelihood based inference of ERGMs from randomized response

Exponential-family random graph models (ERGMs) (Wasserman and Pattison, 1996,

and others) express the probability of a network x ∈ X as an exponential family:

Pθ(X = x) =
exp{θ·g(x)}
c(θ,X )

, x ∈ X , (1)

with θ ∈ Θ ⊆ Rq a vector of parameters, g(x) a vector of sufficient statistics typically

embodying the features of the social process that are of interest or are believed to be

affecting the network structure, and c(θ,X ) is the normalizing constant given by

c(θ,X ) =
∑
x∈X

exp{θ·g(x)}. (2)

When g(x) can be decomposed into a summation over the network’s dyads, i.e., g(x) =∑
i,j xi,jgi,j for some covariate vector gi,j , Model 1 becomes a logistic regression with

the dyads as responses. Such a decomposition of the sufficient statistics (i.e., g(x))

can be used to model a large variety of effects, including propinquity, homophily on

observed attributes, and effects of actor attributes on gregariousness and attractiveness.

However, substantively important effects like propensity towards monogamy in sexual

partnership networks and triadic (friend-of-a-friend) effects in friendship networks cannot

be modeled, and one needs to include sufficient statistics that induce dyadic dependence.

Under dyadic dependence, even when x is fully observed (i.e., no privacy mecha-

nism), it is a challenge to find the maximum likelihood estimate (MLE) of θ, because

the normalizing constant c(θ,X ) given by (2) is an intractable sum over all (2n(n−1)/2

for undirected) possible graphs in X . Early efforts were limited to pseudolikelihood

of Strauss and Ikeda (1990), but with availability of computing power, more accurate

simulation-based methods were applied to the problem, first Robbins–Monro (Robbins

and Monro, 1951) by Snijders (2002), then Monte-Carlo MLE (Geyer and Thompson,

1992) by Hunter and Handcock (2006). The latter algorithm starts with an initial guess
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θ0 ∈ Θ and sets up a likelihood ratio between a candidate guess θ near θ0 and θ0 itself,

L(θ,X )

L(θ0,X )
=

exp{θ · g(x)}/c(θ,X )

exp{θ0 · g(x)}/c(θ0,X )
= exp{(θ − θ0) · g(x)}c(θ0,X )

c(θ,X )
,

then uses a sample under θ0 to approximate the ratio c(θ,X )/c(θ0,X ) by observing that

c(θ,X )

c(θ0,X )
=
∑
x′∈X

exp{θ · g(x′)}
c(θ0,X )

=
∑
x′∈X

exp{(θ − θ0) · g(x′)}exp{θ0 · g(x′)}
c(θ0,X )

= Eθ0 [exp{(θ − θ0) · g(x)}] ≈ 1

M

M∑
i=1

exp {(θ − θ0)·g(Xi)}, (3)

for X1, X2, . . . , XM a sample of M realizations from the model at θ0, simulated using

MCMC (Snijders, 2002; Morris et al., 2008, for example). Maximizing the likelihood

ratio with respect to θ to obtain the next guess θ1, simulating from θ1, and repeating

the process until convergence yields the MLE θ̂.

Handcock et al. (2010) extended the above algorithm to the case where some dyads

were unobserved—missing at random—and their approach can, in turn, be extended to

private network data. Given a private network y obtained by drawing one realization

from Pγ(Y = y|X = x), simply maximizing θ for Pθ(X = y) can produce incorrect

results (Karwa et al., 2014). Hence one must use the face-value likelihood Ly,γ(θ),

which sums over all possible true networks x that could have produced y via the privacy

mechanism:

Ly,γ(θ) = Pθ,γ(Y = y) =
∑
x∈X

Pθ,γ(Y = y ∧X = x) =
∑
x∈X

Pθ(X = x)Pγ(Y = y|X = x).

In case of the randomized response mechanism of Algorithm 1, γ is the collection of

probabilities used for perturbing the dyads, i.e., γ = {pij , qij}.

Now, consider the likelihood ratio of θ with respect to some initial configuration θ0:

Ly,γ(θ)

Ly,γ(θ0)
=

∑
x∈X Pθ(X = x)Pγ(Y = y|X = x)∑
x∈X Pθ0(X = x)Pγ(Y = y|X = x)

=

∑
x∈X

exp{θ·g(x)}
c(θ,X ) Pγ(Y = y|X = x)∑

x∈X
exp{θ0·g(x)}
c(θ0,X ) Pγ(Y = y|X = x)

=
c(θ0,X )

c(θ,X )

∑
x∈X

exp{(θ − θ0)·g(x)} exp{θ0·g(x)}Pγ(Y = y|X = x)∑
x′∈X exp{θ0·g(x′)}Pγ(Y = y|X = x′)

=
c(θ0,X )

c(θ,X )
Eθ0,γ [exp{(θ − θ0)·g(x)}|Y = y].
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In the above expression, the ratio of normalizing constants can be approximated as in

(3), while the conditional expectation can, as before, be approximated using MCMC.

Karwa et al. (2014) did so by re-weighting the sample drawn to estimate c(θ,X )/c(θ0,X )

by Pγ(Y = y|X = Xi), which is similar to a weighted EM based approach of Woo and

Slavković (2012). The approach of Karwa et al. (2014) is very costly, however, because

the weights Pγ(Y = y|X = Xi) are likely to be concentrated among the small number

of Xi closest to y, requiring a huge M for an adequate precision. We propose to instead

draw a second MCMC sample, from Pθ0,γ(X = x|Y = y), using a Metropolis algorithm

that proposes symmetrically over X and accepts with probability

min

{
1,

exp{θ0·g(x?)}Pγ(Y = y|X = x?)

exp{θ0·g(x)}Pγ(Y = y|X = x)

}
= min

(
1, exp[θ0·{g(x?)− g(x)}]Pγ(Y = y|X = x?)

Pγ(Y = y|X = x)

)
,

or a similar Metropolis–Hastings algorithm with an asymmetric proposal. Given such

a sample, X ′1, X
′
2, . . . , X

′
M ,

Ly,γ(θ)

Ly,γ(θ0)
≈

1
M

∑M
i=1 exp {(θ − θ0)·g(X ′i)}

1
M

∑M
i=1 exp {(θ − θ0)·g(Xi)}

. (4)

The computing cost of fitting a given ERGM to a private sample y is therefore on the

order of twice the cost of fitting the same ERGM to the fully observed network x. As

described, the two-sample approach does not remove the requirement that it be possible

to compute probabilities Pγ(Y = y|X = x) (or at least their ratio Pγ(Y = y|X =

x?)/Pγ(Y = y|X = x)) in a closed form: the parameters of the privacy mechanism

still need to be known. The standard errors can be obtained by inverting the negative

Hessian of the face-value log-likelihood, and twice differentiating the logarithm of (4)

with respect to θ suggests estimating the latter by applying the formula of Hunter and

Handcock (2006, eq. 3.5) to the constrained and the unconstrained samples and taking

the difference, that is,

Îy,γ(θ̂) ≈
{
g(Xi)g(Xi)> − g(Xi) g(Xi)

>}− {g(X ′i)g(X ′i)
> − g(X ′i) g(X ′i)

>}
,

where f(Xi) = M−1
∑M

i=1wif(Xi) some function f(·),

wi = exp
{

(θ̂ − θlast) · g(Xi)
}
/

M∑
i=1

exp
{

(θ̂ − θlast) · g(Xi)
}
,

and analogously for w′i and f(X ′i). We implemented this inference technique as an
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enhancement to the ergm package (Hunter et al., 2008; Handcock et al., 2015), which we

intend to make available for public use.

6. Case study: Enron e-mail data

In this section we study the private release and analysis of the Enron dataset discussed

in Section 1 by applying the randomized response mechanism with the likelihood based

inference developed in sections 3 and 5. A similar study of the Lazega and the Teenage

friendship data can be found in the supplement, (Karwa et al., 2016).

The goal of these case studies is to demonstrate how one can share differentially

private synthetic networks for valid statistical analyses. We synthesize and “release”

networks by generating copies of the original network using Algorithm 1. By assuming

that the potential user would only have access to the released synthetic network and the

knowledge of the privacy mechanism, we evaluate how well can a researcher replicate an

analysis performed on the original data and obtain inferences similar to those using the

original network. The synthetic network can be analyzed via two methods: the Naive

where one ignores the privacy mechanism and analyzes the synthetic network as if it was

the original network, and the Missing Data from Section 5 where one models the privacy-

preserving mechanism explicitly and parameter estimates are obtained by maximizing

the missing data likelihood. Recall, we assume that the attribute information associated

with the nodes is publicly available, for reasons explained in Section 1.

6.1. Evaluating accuracy

We evaluate the accuracy of the estimates by using Kullback–Leibler (KL) divergence,

mean squared error (MSE) and the bias. KL divergence measures the distance between

two distributions on networks – the first one implied by estimates θ̂y obtained from the

synthetic network y and the second one implied by the estimates θ̂x from the original

network x. A smaller value of KL suggests that the estimated models are close. To

obtain insight into the accuracy of individual parameter estimates, we measure their

bias and MSE. The bias is defined as E[θ̂y]− θ̂x and the MSE is given by E[(θ̂x− θ̂y)2].
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The KL divergence between the two distributions:

KL(θ̂x, θ̂y) = Eθ̂x

[
log

Pθ̂x(X)

Pθ̂y(X)

]
=
∑
x∈X

log

(
Pθ̂x(x)

Pθ̂y(x)

)
Pθ̂x(x)

= (θ̂x − θ̂y) · g(x) + log
c(θ̂y)

c(θ̂x)
= log

Lx(θ̂x)

Lx(θ̂y)
.

This log-likelihood-ratio can be estimated using the MCMC techniques described in

Section 5 and by Handcock et al. (2010).

We consider two ways of measuring risks for releasing synthetic networks. For both,

for each value of privacy risk, we release B = 20 synthetic networks using Algorithm 1

and estimate their ERGM parameters. In Method 1, we assign different privacy risks for

different types of edges, when it is believed that revealing certain types of ties, given the

nodal information, will have higher privacy risks associated with them. The choice of

which ties are riskier if revealed of course depends on the application. In Method 2, we

assign equal privacy risks for all dyads by setting pij = qij = 1 − π, where 1 − π is the

probability of retaining an edge (or non-edge) and π the probability of perturbing an

edge (or non-edge). For understanding the risk-utility trade-off, we use a range of values

of π in Algorithm 1, and plot the KL divergence between the estimates obtained using

the synthetic networks and the estimates from the original network. The horizontal axis

denotes the privacy risk as measured by the probability of perturbing an edge π in %.

Note that larger values of π imply weaker privacy. The vertical axis denotes utility of

the synthetic networks as measured by the KL divergence on log scale. Larger values of

KL divergence correspond to lower utility; e.g., see Figure 1b.

6.2. Data and Model

We consider a large subset of Enron email network (Cohen, 2009), and use a version

of data with email communications aggregated over the entire period of study between

1998 and 2002 (Perry and Wolfe, 2013; Zhou et al., 2007). Viewing a mass-mailing as

representing a weaker social link than a personal message, we weight each message by

the inverse of the number of its recipients and consider there to be a link from i to j if the

sum of message weights with i as the sender and with j among its recipients is greater
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than or equal to 2. Note that thresholding a valued dataset can produce misleading

results (Butts, 2009), and privacy for valued network models is subject of ongoing work.

In our analysis, we consider the effects of exogenous attributes of employees (gender,

seniority, and department) and endogenous effects (mutuality). For the former, we ask

if those equally senior are more likely to communicate than those with different levels of

seniority, as well as whether senior employees are more likely to e-mail junior employees,

rather than the other way around, and similarly for the two genders; and we measure

how much the departments’ overall propensities to communicate vary, and how much

more communication occurs within a department as opposed to between them.

The network consists of 156 nodes and 1310 egdes. There are three covariates asso-

ciated with each node: department (Legal, Trading or Other), gender (Male or Female),

Seniority (Senior, Junior). We consider an ERGM with endogenous effects modeled by

the number of edges and mutuality, exogenoues effects modeled by the direct effects and

the homophily effects of Gender, Department and Seniority. The direct effects are given

by
∑

i,j xijZi, where Zi is the attribute of node i. The dyadic homophily effects are

given by
∑

ij xijI(Zi = Zj) where Zi is the attribute of node i. These terms capture the

matches between the two nodes on the given attribute and measure the strength of ties

between nodes of the same attribute type.

6.3. Results

We consider two methods for selecting perturbation probabilities: one that perturbs

dyads uniformly and another that varies perturbation probabilities based on known

actor attributes.

Method 1: We assign disclosure risks based on covariates, such that email exchanges

between nodes from the Legal Department are deemed to be riskier than other emails,

and hence are given more privacy protection, i.e. they have a higher probability of

perturbation. We use two different values for the probability of perturbing a dyad:

π1 = 4.8% (i.e., privacy risk ε = 3) if both nodes i and j belong to the Legal Department,

and π2 = 0.25%, (i.e., privacy risk ε = 6), otherwise. The overall privacy risk for any

dyad is measured by larger ε, 6 (higher privacy risk) in this case. However, the privacy
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risk for emails exchanged between nodes that belong to the Legal Department is 3 (lower

privacy risk) and the privacy protection is higher. We compare this network release

strategy with two others where all dyads are released either with π = π1 or with π = π2.

Figure 1a shows the utility (as measured by KL divergence) for these three strategies;

the utility is lowest (KL divergence is highest) when we use a perturbation probability of

4.8% which corresponds to the lowest privacy risk. However, if we allow for larger privacy

risks for emails from the Legal Department (π1 = 4.8% and π2 = 0.25%), we obtain an

improved utility. Finally, if we increase the privacy risk for all emails (1− π = 0.0025),

we obtain marginally higher utility, but at the expense of reduced privacy. This analysis

shows that assigning asymmetric privacy risks offers a better risk-utility trade-off.

Method 2: We assume the same the privacy risk for every dyad and set the probability

of perturbing a dyad 1− pij = 1− qij = π. Figures 1b, 1c and 1d show the results, and

Figure 2 shows the original sub-network of randomly chosen 50 nodes with 3 synthetic

sub-networks generated using π = 2%. Notice the addition of fake ties and removal of

existing ties. The synthetic sub-networks are visibly more dense: while 2% may seem

like a tiny perturbation probability, consider that the original network has a density of

5.4%, which means that, effectively, more than a quarter of the ties in the network are

now “fake”. Figure 1b shows that the KL divergence between the private estimate and

the non-private estimate increases as the probability of perturbing an edge increases,

thus stronger privacy leads to reduced utility. However, note that since the vertical axis

is in the log scale, as we increase privacy (move from left to right on the horizontal

axis) the KL divergence of the naive estimates increases at a much faster rate when

compared to the missing data estimates, especially for larger values of the perturbation

probability (e.g., 1 to 3 percent). Thus for strong privacy protection, the missing data

likelihood provides estimates that are closer to the non-private estimates. Uncertainty

in model estimation is reflected by the variation in the KL divergence. We can see

that for perturbation probability of 2% and 3%, the KL divergence of the missing data

method shows much higher variation than the naive method, because for larger values of

perturbation probability, there are a lot of fake edges that are added and the uncertainty

in model estimation increases. On the other hand, the naive method incorrectly places
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Fig. 1. Enron data: (a) and (b) Box plots of KL divergence of models obtained using the synthetic

networks. The horizontal axis represents the probability of perturbing an edge in % (higher

corresponds to lower privacy risk). The vertical axis shows the KL divergence in log scale

(higher value corresponds to lower utility). The red color (lower value of KL) represents the KL

divergence between the missing data estimates the MLE obtained from the original data. The

cyan line (higher value of KL) represents the KL divergence between the naive estimates and

the MLE; (c) MSE; (d) Absolute Bias of parameter estimates.
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Fig. 2. 3 Synthetic copies of a random sub-network of 50 nodes of the Enron Network for 2%

perturbation and the original sub-network (the top left corner) are plotted in the same coordinate

system for ease of comparison.

a lot of confidence in the estimated model since it ignores the privacy mechanism.

For a more detailed evaluation, figures 1c and 1d show the MSE and the percentage

absolute bias (with respect to the MLE from the original data) of both the missing data

and naive parameter estimates obtained from the synthetic networks with varying levels

of perturbation; overall, the missing data results are better, but not uniformly. Table

1 shows the mean parameter estimates for a 2% perturbation with their bias and the

MSE. Here, the bias of the missing data estimates is smaller than of the naive estimates,

but the MSE is typically larger. This is expected as the missing data estimates take into

account the additional uncertain in the privacy mechanism.

Table 2 gives a typical (median, according to KL divergence) fits from the simula-

tion, their standard errors, and parameter significance levels also for a 2% perturbation.

Here, the naive estimator’s standard errors are uniformly smaller compared to the those

from the original data. This is likely because the perturbed network is more dense,

resulting in higher variability of sufficient statistics under the model and thus higher
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Table 1. Parameter estimates based on the original data (MLE) and the synthetic networks (Missing and Naive) obtained for the Enron Data for a 2% perturbation.
Missing Data Naive Data

Parameter MLE estimate mse bias estimate mse bias

Edges -3.98 -3.70 0.21 0.29 -3.40 0.34 0.58

Node mix (Gender) -0.61 -0.42 0.09 0.20 -0.27 0.13 0.34

Node mix (Seniority) -0.43 -0.18 0.10 0.26 -0.15 0.09 0.29

Mutuality 4.65 3.34 45.73 -1.31 3.12 2.37 -1.54

Nodefactor Department (Other) 0.05 0.05 0.01 -0.01 0.04 0.00 -0.01

Nodefactor Department (Trading) -0.15 -0.12 0.01 0.03 -0.11 0.00 0.04

Homophiliy Department (Legal) 1.50 1.16 0.54 -0.34 1.42 0.01 -0.08

Homophiliy Department (Other) 0.34 0.23 0.02 -0.11 0.29 0.00 -0.05

Homophiliy Department (Trading) 0.63 0.49 0.10 -0.14 0.49 0.02 -0.14

Homophiliy Gender (Female) 0.02 0.04 0.04 0.02 0.14 0.02 0.12

Homophiliy Gender (Male) -0.26 -0.15 0.03 0.11 -0.11 0.03 0.16

Homophiliy Seniority (Junior) -0.10 -0.02 0.01 0.08 0.02 0.01 0.12

Homophiliy Seniority (Senior) 0.50 0.44 0.07 -0.06 0.53 0.00 0.03

Table 2. Parameter estimates, std. errors, and significance of the original Enron data (MLE) and the models fit to synthetic networks with 2% perturbation using Missing Data MLE and

Naive fit, all based on the median, according to KL-divergence.
Parameter MLE Missing Data Naive

Edges −3.982 (0.160)??? −4.354 (0.199)??? −3.471 (0.130)???

Mutuality 4.654 (0.116)??? 4.510 (0.165)??? 3.070 (0.088)???

Homophily Seniority (Junior) −0.098 (0.099) 0.102 (0.122) −0.024 (0.075)

Homophily Seniority (Senior) 0.500 (0.097)??? 0.701 (0.119)??? 0.492 (0.071)???

Node mix (Seniority) −0.434 (0.162)?? −0.080 (0.213) −0.211 (0.105)?

Homophily Gender (Female) 0.022 (0.114) 0.211 (0.141) 0.211 (0.094)?

Homophily Gender (Male) −0.263 (0.095)?? −0.085 (0.126) −0.044 (0.073)

Node mix (Gender) −0.615 (0.170)??? −0.207 (0.225) −0.174 (0.114)

Nodefactor Department (Other) 0.054 (0.097) 0.151 (0.108) 0.040 (0.081)

Nodefactor Department (Trading) −0.147 (0.084) −0.181 (0.092)? −0.021 (0.076)

Homophily Department (Legal) 1.499 (0.134)??? 1.556 (0.148)??? 1.487 (0.126)???

Homophily Department (Other) 0.336 (0.127)?? 0.224 (0.134) 0.352 (0.111)??

Homophily Department (Trading) 0.633 (0.128)??? 0.737 (0.145)??? 0.397 (0.113)???

Significance levels: 0.05 ≥?> 0.01 ≥??> 0.001 ≥???
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estimate of information (Hunter and Handcock, 2006, eq. 3.5) and smaller standard

errors. However, the missing data MLE’s standard errors are uniformly larger because

they reflect (correctly) the additional uncertainty introduced by the perturbation. This

shows that the overall inference even from the highly perturbed networks is still valid

given our methods, albeit with some loss of statistical power. While the missing data

MLE reliably detects mutuality, homophily between senior employees, and other strong

(P -value ≤ 0.001) effects, other effects, homophily in the “Other” department or the

tendency of males to e-mail females more often than otherwise, are lost. For less per-

turbation, some power would be regained, and thus the data curator will need to make

a choice on a desirable risk-utility trade-off.

7. Conclusions

Motivated by a growing availability of network data combined with growing concerns

about privacy, we describe a framework for sharing relational data that not only pre-

serves the privacy of individual relationships in a quantifiable manner, but also allows for

meaningful inferences in estimating the popular exponential-family random graph mod-

els. The randomized response scheme we propose is simple yet effective, and quantifiable

via the Edge Differential Privacy framework that measures privacy risk in terms of a

worst-case disclosure. We performed a case study to evaluate how well the proposed ap-

proach works at a variety of privacy levels, and we include in the supplement additional

case studies, with networks differing in size, structure, topology and associated covari-

ate information, and demonstrate its usefulness in addressing the realistic challenge of

simultaneously maintaining the privacy of sensitive relations in the network and sharing

of the network data that would support valid statistical inference. Our analyses show

that the proposed approach leads to estimates much closer to those obtained for a full

network than those obtained by ignoring the privacy mechanism. We can replicate the

original analyses using synthetic networks, but we need to model the privacy mechanism

that generated the network explicitly and use the missing data likelihood. Although

we advocate the use of missing data and MCMC techniques by analysts who use data

obtained from a differentially private mechanism, or more general privacy-preserving
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mechanisms, they can also be used by data curators to release synthetic graphs for

performing preliminary analysis of other models.

We are not advocating the use of such synthetic datasets for performing publication

quality analysis, although in some cases, the synthetic data may suffice. Such synthetic

datasets should be seen as a way to provide easy access to datasets that otherwise would

never be made available or would require years before access is granted. The synthetic

datasets can be used to perform qualitative, exploratory or preliminary data analyses. If

the dataset seems useful or a more detailed analysis is required, one must obtain access

to the original data through contractual obligations and other means.

A key advantage of this method in relation to other proposed methods for private

network release is that the released private synthetic graphs preserve the actual relations

and not just sufficient statistics, so our technique allows us to find MLE of any ERGM

that could have been fitted to the original network, at a modest computational cost. The

only alternative computational approach known to us, the Bayesian exchange algorithm,

requires an MCMC sample of network realizations for each MCMC draw of θ from the

posterior (MCMC within MCMC) which vastly increases the computational cost, when

our approach merely doubles it, with the two samples able to be run in parallel.

In addition, having estimated θ̂y from the perturbed graph, we can simulate from the

conditional distribution X|θ̂y, y (∝ Pγ(Y = y|X = x)Pθ̂(X = x)) of possible graphs x

from which y could have plausibly come. For example, if x exhibited strong homophily on

some actor attribute, y, which has had false ties added at random, would exhibit weaker

homophily. The amount of homophily in x could be estimated by the ERGM using our

technique, and graphs simulated from X|θ̂y, y would retain most of the relations in y,

but “clean” many of the false ties inconsistent with the model, as demonstrated by the

case studies.

We have used differential privacy as our measure of protection, but this approach,

while it provides strong guarantees has substantive limitations, as discussed in Section 4.

For example, we distinguished 1 − pij , the probability of hiding a tie, from 1 − qij , the

probability of creating a false tie. Our inferential framework handles this seamlessly, and

this distinction is important if the ties reflect socially or legally stigmatized relationships.
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In that case, one might want to set 1 − qij to a relatively high value in order to create

deniability for actors with such relationships. However, setting 1− pij > 0 would reduce

utility to little gain of privacy. Thus, one might set pij = 1, but then Proposition 1 gives

ε =∞. This suggests that this measure is too crude to assess disclosure risk when there

is an assymmetry in the consequences of a tie as opposed to a non-tie being exposed.

Lastly, we assume that while the relationships are sensitive, the exogenous individual

attributes such as gender are not: they can be released completely and without noise.

This is a limitation inherent in ERGMs, which treat them as fixed and known covariates.

The exponential-family random network models introduced by (Fellows and Handcock,

2012) propose to model relations and actor attributes jointly in an exponential family

framework. If actor attributes are perturbed as well with a known probability, our infer-

ential approach should be directly applicable, and this is subject for ongoing research.
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