28,047 research outputs found

    Optically controlled resonance energy transfer:Mechanism and configuration for all-optical switching

    Get PDF
    In a molecular system of energy donors and acceptors, resonance energy transfer is the primary mechanism by means of which electronic energy is redistributed between molecules, following the excitation of a donor. Given a suitable geometric configuration it is possible to completely inhibit this energy transfer in such a way that it can only be activated by application of an off-resonant laser beam: this is the principle of optically controlled resonance energy transfer, the basis for an all-optical switch. This paper begins with an investigation of optically controlled energy transfer between a single donor and acceptor molecule, identifying the symmetry and structural constraints and analyzing in detail the dependence on molecular energy level positioning. Spatially correlated donor and acceptor arrays with linear, square, and hexagonally structured arrangements are then assessed as potential configurations for all-optical switching. Built on quantum electrodynamical principles the concept of transfer fidelity, a parameter quantifying the efficiency of energy transportation, is introduced and defined. Results are explored by employing numerical simulations and graphical analysis. Finally, a discussion focuses on the advantages of such energy transfer based processes over all-optical switching of other proposed forms. © 2008 American Institute of Physics

    Surface optical vortices

    Get PDF
    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners

    Development of a flight software testing methodology

    Get PDF
    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada

    Optical Surface Vortices and Their Use in Nanoscale Manipulation

    Get PDF
    Following a brief overview of the physics underlying the interaction of twisted light with atoms at near-resonance frequencies, the essential ingredients of the interaction of atoms with surface optical vortices are described. It is shown that surface optical vortices can offer an unprecedented potential for the nanoscale manipulation of absorbed atoms congregating at regions of extremum light intensity on the surface

    Identifying the development in phase and amplitude of dipole and multipole radiation

    Get PDF
    The spatial variation in phase and the propagating wave-front of plane wave electromagnetic radiation are widely familiar text-book territory. In contrast, the developing amplitude and phase of radiation emitted by a dipole or multipole source generally receive less attention, despite the prevalence of these systems. There is additional complexity in such cases where, in consequence of retardation, the character and features significantly and progressively change as radiation propagates onwards, from the near-field and out towards the wave-zone. Readily developed analytical representations of the electric field, cast as a function of distance from the source, provide illuminating insights into the most prominent and distinctive properties of radiant electromagnetic emission. Graphical implementations and animations of the results prove particularly instructive in revealing the spatial form and temporal evolution of the emergent electromagnetic fields

    A methodology for testing fault-tolerant software

    Get PDF
    A methodology for testing fault tolerant software is presented. There are problems associated with testing fault tolerant software because many errors are masked or corrected by voters, limiter, or automatic channel synchronization. This methodology illustrates how the same strategies used for testing fault tolerant hardware can be applied to testing fault tolerant software. For example, one strategy used in testing fault tolerant hardware is to disable the redundancy during testing. A similar testing strategy is proposed for software, namely, to move the major emphasis on testing earlier in the development cycle (before the redundancy is in place) thus reducing the possibility that undetected errors will be masked when limiters and voters are added
    • …
    corecore