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ABSTRACT

A methodology for testing fault-tolerant software is presented in
this paper. There are problems associated with testing fault-tolerant
software because many errors are masked or corrected by voters,
limiters, automatic channel synchronization, etc. This methodology
illustrates how the same strategies used for testing fault-tolerant
hardware can be applied to testing fault-tolerant software. For
example, one strategy used in testing fault-tolerant hardware is to
disable the redundancy during testing. A similar testing strategy is
proposed for software, namely, to move the major emphasis on testing
earlier in the development cycle (before the redundancy is in place)
thus reducing the possibility that undetected errors will be masked when
limiters and voters are added.
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1. INTRODUCTION

This paper presents a methodology for testing fault-tolerant

software. The reason for such a specific methodology is that testing

fault-tolerant software presents problems not encountered in testing

other types of software. These problems were discovered during an

experiment to assess the use of assertions in dynamic testing of digital

flight control system software. The experiment demonstrated that

assertion testing can be very effective at detecting errors in flight

software, however, it also uncovered a unique set of problems in testing

fault-tolerant software. Unfortunately, these problems are sometimes

caused by the very method used for implementation of fault tolerance,

that is, the fault masking and fault secure techniques of duplication,

voters, limiters, etc. Solutions for the problems have been

incorporated into this methodology for testing fault-tolerant software.

Factors taken into account during development of this testing

methodology are discussed in Sec. 2. The methodology for testing

fault- tolerant software is presented in Sec. 3. Section 4 contains

various scenarios or levels of the use of assertion testing of fault-

tolerant systems. A summary is in Sec. 5.



2. DEVELOPMENT OF THE METHODOLOGY

There were many factors contributing to the development of this

testing methodology, including consideration of the desirable attributes

of a testing methodology, a thorough study of various software testing

methods, and an analysis of the problems encountered in testing fault-

tolerant software. These factors are discussed in this section.

2.1 IMPORTANT ATTRIBUTES OF A TESTING METHODOLOGY

Before a testing methodology can be formulated, it is important to

determine the attributes or characteristics that a testing methodology

must have. Some of these attributes are general and apply to any

software testing methodology, while others are specific to fault-

tolerant-software testing. They are as follows:

* Good error detection capability - the basic testing strategy

should have a high probability of finding errors.

* Adaptable to automation - including automation of test

evaluation as well as test case generation.

* Cost effective - should help in reduction of man power and time

for testing.

* Appropriate to the software - some types of software, such as

fault-tolerant software, have special problems that need to be

considered when a test plan is developed.



* On-line error detection - in order to provide recovery, fault-

tolerant software requires error detection during system operation

(deployment).

* Not affect performance of software - on-line testing must not

have high overhead requirements.

2.2 ASPECTS OF SOFTWARE TESTING

There are many aspects to testing software, such as: when the

software is tested, where the testing takes place, and how the testing

is done. Software is usually subjected to some form of "testing"

throughout the entire software development cycle - from the debugging

efforts of the programmer to the acceptance testing conducted when the

software is delivered and installed on site. In addition to this, some

sort of testing or error detection scheme is incorporated in fault-

tolerant software to provide masking of errors or recovery from errors

when it is in operation. Testing of the software usually takes place on

the computer where it is developed. Fault-tolerant software most often

operates in a real-time environment in which the outputs cause direct

action. Such software is usually also tested in a simulated environment

and is then embedded for testing in the system for which it is

ultimately intended. The methodology presented in this paper is not

just testing for one phase but is broad in scope because it encompasses

testing throughout the entire software development cycle and testing in

all of the environments - including the on-line error detection required

for fault-tolerant applications.



The most important aspect of testing is how the testing will be

done, in other words, the testing approach or method. A program can be

tested by static analysis or dynamically by executing the software.

Static analysis is usually done by a "software tool" that examines the

data flow within the program and looks for inconsistencies in the

program structure or variables [Adrion 82], [Andrews 833. Static

analysis is useful in the early phases of software development but is

not a substitute for dynamic program testing. This methodology is for

dynamic testing of software.

There are two classifications of dynamic testing of software. One

can be termed external because it looks primarily at the external

results rather than at the program itself. The other can be thought of

as internal testing, since it is most concerned with what is happening

within the program and there is less emphasis on the actual values of

the output variables. It is important to note that these types are not

mutually exclusive. Figure 1 shows the basic classification of testing

strategies.

SOFTWARE TESTING

I I
STATIC DYNAMIC

EXTERNAL INTERNAL

Figure 1. Basic Testing Strategies



External testing is sometimes referred to as "black box" testing

because of the lack of emphasis on the program structure, etc. The

program is tested by perturbation (changing) of the values of the input

variables or by perturbation of the program itself. In the first type

of testing, all possible values of the input variables may be tested

(called exhaustive testing) or the values of the input variables may be

changed according to some algorithm, as in random testing [Duran 84],

[Ntafos 853, in grid testing [Andrews 85], in functional testing [Howden

80], or in adaptive testing [Andrews 81,85]. Perturbation of the

program is done by mutation analysis [De Millo 78], [Budd 80] or. by

error seeding. Figure 2 illustrates the types of external dynamic

testing.

EXTERNAL

INPUT
PERTURBATION

RANDOM EXHAUSTIVE GRID

PROGRAM
PERTURBATION

ERROR
FUNCTIONAL ADAPTIVE SEEDING

MUTATION
ANALYSIS

Figure 2. External Testing Strategies



Internal testing also has two general types within its

classification. One type is interested mainly in the structure of the

program, that is, determining what statements have been executed or what

paths have been traversed [Gannon 793, [Miller 75D. For this reason, it

is usually referred to as "structural" testing. The other is interested

in whether or not certain conditions or specifications are valid at

given points in the program. These conditions are stated in the form of

logical predicates. This type of testing is called assertion testing.

Assertions that are made "executable" have been used in for testing in

software development environments and have been the subject of several

research studies [Andrews 79-853, [Mahmood 84a,b,c]. Figure 3 is a

diagram of types of internal testing.
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Figure 3. Internal Testing Strategies



Assertion testing is a technique for dynamically testing software

by embedding additional statements, called assertions, in the software.

An assertion states a condition or specification in the form of a

logical expression. During execution of the program, the assertion is

evaluated as true or false. If it is false, the presence of an error is

indicated. Notification of the error is most often made in an output

message, such as, "Assertion in procedure <xxxx> at statement // <nn> is

false." However, when the testing process is fully automated,

information on the assertion violations is used as input by the software

program that generates test cases using adaptive or artificial

intelligence techniques.

Assertion testing has distinct advantages over other testing

methods and therefore was chosen as the basic strategy for a testing

methodology for fault-tolerant software. Among the most important are

the following:

* It has proved effective in detecting errors in typical real-time,

fault-tolerant software.

* Determining correctness of the output is remarkably simplified

because of the automatic notification of an error when an assertion

is violated.

* Because of this simplification and consequent reduction of time

required for assessment of test results, the generation of a larger

set of input data becomes possible.



* Automation of the process of adaptively generating test data

becomes easier to implement using optimization and artificial

intelligence techniques [Andrews 81,85], [Cooper 76].

* Assertions left in the code during operation can provide on-line

testing that is comparable to the "built-in self test" used in

hardware testing.

* When combined with recovery blocks, assertions embedded in the

software provide a convenient and effective way to implement on-line

fault tolerance for hardware faults, as well as for software errors.

* Assertions can be made conditionally compilable, so they can be

turned into comment statements and easily stripped out of the code

after testing is finished.

2.3 PROBLEMS IN TESTING FAULT-TOLERANT SOFTWARE

During the development of this methodology, an experiment was

conducted to assess the use of assertion testing for digital flight

control system software. The software used in the experiment was the

autopilot code for a wide-bodied, commercial airplane [DFCR-96 80]. The

code is representative of real-time, fault-tolerant software and uses

typical techniques for provision of fault tolerance.

The experiment uncovered a unique set of problems in testing fault-

tolerant software [Andrews 85b], [Mahmood 84a,b]. These problems were

due to the testing environment itself, as well as the basic

characteristic of fault-tolerant software, that is, the redundancy used



to mask or correct errors. When the software was tested in a real-time

environment, which simulated actual flight conditions, the following

problems were noted:

* There were many crashes of the flight computer due to the

sensitivity of the simulated environment.

* "Bugs" were hard to detect, because little indication was given as

to where the program had failed.

* It was difficult to determine whether failures were due to a

software error or the presence of a hardware fault.

* Executing software on a simulated real-time, fault-tolerant

environment is very expensive because it is time comsuming and often

requires extra personnel to keep the simulator running.

In addition to the problems due to the simulated real-time environment,

the following characteristics of fault-tolerant flight software that

contribute to the problems in testing fault-tolerant software were

identified:

* USE OF LIMITERS - In the autopilot code, there is frequent use

of limiters which reset certain variables whose values are not

within certain limits. This is done, not only to control possible

errors, but also to keep the values of those variables within the

limits of passenger comfort and within the stress limits of the

airplane structure, etc. However, this use of limiters throughout

the program interferes with detection of errors during testing
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because errors can be corrected by a limiter and therefore masked.

* USE OF VOTERS - The values of input data, as well as the values

of variables from computations, are continually voted upon. If one

of the values does not agree with the others, the majority vote

prevails. Therefore, errors can be masked and difficult to detect,

since propagation of errors is halted.

* AUTOMATIC CHAMNEL SYNCHRONIZATION - The autopilot flight

computers have a dual-dual redundancy architecture with automatic

synchronization of the channels provided by the software. Under

these conditions, assertions which monitor timing do not catch

errors because timing problems are immediately corrected.

These observations clearly showed that testing a software system

with built-in redundancy, that is, a fault-tolerant system, is not

possible using normal testing techniques. The same problems encountered

in testing fault-tolerant hardware systems (fault masking, etc) exist

for testing fault-tolerant software systems. The following three

changes to the development and testing cycle for fault-tolerant software

need to be made:

1) "Design for testability" features (such as the use of assertions

for testing) should be incorporated into fault-tolerant software design

specifications.
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2) Because of the problems and cost of testing in a real-time

environment (such as on a simulator), testing in the earlier phases

should be expanded so most errors are found before real-time tests. In

this way, significant reductions in time and cost could be effected.

3) The redundancy and automatic channel synchronization have to be

removed to be able to test fault-tolerant software effectively without

error masking. This same method, the disabling of redundancy, has been

proposed for testing fault-tolerant hardware. This is another reason

for emphasizing testing before the redundancy is in place. It is also a

consideration during the maintenance period. When changes are made to

the code, testing must done without the redundancy in order to be most

effective.
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3 A TESTING METHODOLOGY FOR FAULT-TOLERANT SOFTWARE

The testing methodology presented here differs from traditional

testing strategies in three ways: First, it is based on the use of

assertions throughout the entire software cycle from the design of the

system, through all phases of testing, maintenance, and for on-line"

checking during deployment. Second, the emphasis on testing is moved

forward, so that more thorough testing is performed before the system is

tested by real-time simulation or as an embedded system. Third, the

methodology has been adapted to take into account the particular

problems encountered in testing fault-tolerant software.

The typical procedure for testing flight control software (and

which is probably similar for most other real-time, fault-tolerant

software) is as follows: Get the program to compile, test it on a flight

simulator, and then test it in the airplane.

Since the first objective is to get the program up and running,

"bugs" found during compilation are removed until the program will

compile without errors. Then the program is downloaded into the flight

computers installed on a pallet. There is a direct connection from the

pallet to another computer that provides real-time simulation of the

movement of the airplane on which the flight computers will eventually

be installed. Data, generated by simulation on this computer is passed

to the flight computers as input. (Normally, this input data would be

read from sensors.) Once the program executes without failures on the

flight simulator, it is downloaded into flight computers that are
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installed in airplanes for actual flight tests. At this time, a flight

engineer goes along and makes recommendations for changes to the code

that will make the flight more smooth. These changes are usually in the

form of "limiters" such as those that prevent the plane from banking too

quickly and causing stress to the structure of the plane or to the

passengers.

The procedure to be followed in the testing methodology for fault-

tolerant software that is proposed in this paper is as follows: Write

assertions as soon as possible (some can be written before

implementation of the code); use assertions during debugging; test

thoroughly using automation of the testing process during module and

system integration tests; then remove the least important assertions for

testing by real-time simulation; and follow with testing as an embedded

system. The testing methodology, adapted to the various phases for

fault-tolerant software, is outlined next.

3.1 SPECIFICATIOH/REQUIREMEMTS/DESIGM

During this early stage, assertions can be written for certain

conditions, generally global conditions, that are true at various points

during execution of the software. These assertions are best written by

system designers. For flight control software, the designers are those

people who understand flight control laws and operation of airplanes.

Some of these laws can be stated in the form of the logical condition of

assertions. The type of assertion that is written at this stage is

likely to be a comparison between different variables, as well as



assertions that set the tolerances for the values of a variable.

3.2 SOFTWARE IMPLEMENTATION

Prior to this stage, assertions can be written by the designer, but

once implementation of the code has begun the nature of assertions

changes somewhat. The type of assertion becomes language dependent and

more specific to the code as well as the machine on which it will run.

This is the stage where the programmer will be the one best able to

write assertions that are local in nature, that is, specific at a

particular point in the program. These assertions will most likely be

those that test for maximal and minimal values of variables, conditions

relating to computer calculations (overflow and underflow), etc. Often

these assertions have little to do with the application, i.e. flight

control laws, etc., but are checks on the operation of the program in

the computer.

Some of the appropriate places in a program where it would be

desirable to add assertions are:

* At each invocation of a module to check values of incoming

parameters.

* At each control construct (IF, WHILE, DO, etc.), because there is a

greater chance of error where paths divurge.

* After data has been read to ensure meaningful values were accessed.

* Following a call to a procedure or function to be sure that values

being returned are within acceptable boundaries.

* Following complex calculations to prevent propagation of an error

resulting from an incorrect formula.
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Testing during implementation is usually referred to as debugging,

because it is not a formalized testing procedure' and often depends

solely on the inclination and preference of the programmer. Symbolic

debuggers are very helpful during this period, but there are some bugs

that are not found by this method. Assertions should be spread

liberally throughout the code, so they can can aid in finding difficult

"bugs" at this time. After the code is tested, extra assertions can be

removed. Suggestions for doing this will be in Section 3.4.

3.3 TESTING

The basis for this methodology for testing fault-tolerant software

lies primarily in expansion of the module and software system testing

phase, so that comprehensive testing is done before implementation of

fault-tolerant techniques is in place. By doing this, error detection

interference - from masking of errors, etc. - is minimal. Although the

use of assertions throughout all phases is important, it is their use

for comprehensive testing at module and system integration that allows

greater coverage and more sophisticated error detection during testing.

Assertion testing may be used with any test case generation technique.

It works especially well with grid and adaptive test generation, because

it allows tests to be both run and evaluated automatically [Andrews 853.

It is this automation of evaluation of test results that permits

expansion of the number of tests that are run (and therefore of the

comprehensiveness of the testing).
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There is a second no less important reason for performing

comprehensive testing at this stages, and that is because of the

difficulty in testing in a simulated real-time environment (outlined in

Sec. 2.3). If most errors are detected prior to execution of the code

on a simulator, then fewer tests need be run. It is obvious that real-

time code must be checked at some point in a real-time environment, but

it is possible to write timing assertions that can locate some timing

errors before code is run on a simulator [Mahmood 84a].

The recommended procedure for module and system testing of software

is as follows:

* individual module tests- whenever possible generate test cases

exhaustively. This is feasible in three cases: when most of the

variables are Boolean (either 1 or 0), when there are a small number

of input variables, or when the range of possible values for the

input variables is small.

* module integration tests- generate test cases in a grid pattern

to ensure uniform coverage. Choose for perturbation those variables

having the most influence on the output.

* system integration tests- generate test cases using another test

case generation methodology, such as random, functional, etc., or

continue with a grid pattern to ensure uniform coverage. Choose for

perturbation those variables having the most influence on the final

system output.
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Testing in the next phases, in a simulation environment or as an

embedded system, is the same as usual except for the number of

assertions. The number of assertions depends on the phase of testing.

When used for module or system testing, assertions should be spread

liberally throughout the software to make it easy to locate the errors.

When the software is ready for testing in a simulation environment or as

an embedded system, the number of assertions must be reduced so that

memory space and execution time overhead are minimized. If assertions

will be used during deployment, the procedure (outlined in the next

section) for choosing which assertions to keep should be followed. If

all the assertions will be removed during deployment, then the easiest

plan for this part of the testing would be to remove the ones that

detected the least number of errors.

3.4 DEPLOYMENT

When assertions are used for error detection in implementation of

fault tolerance techniques, minimization of assertions (and the

consequent overhead) is also important. A reasonable assumption would

be that those assertions shown to be effective in error detection during

the testing phase would be most able to detect intermittent and

transient hardware faults, as well as any new software errors that might

be introduced during maintainance.

One way of improving the selection process of assertions would be

to subject the software to an error seeding process (as was done in the

experiment in testing fault-tolerant software) and then retain a
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covering set of assertions, that is, the set detecting all seeded

errors. In the research experiment, three assertions (out of the

nineteen that were written) would have detected all the detectable

errors. The implication of these results is that it may be possible to

find a small subset of assertions capable of detecting a large number of

errors, so space and time overhead can be minimal.

The placement of the assertions is also dependent on the testing

phase. During the early debugging phase, it is most desirable to have

many assertions to check incoming data, outgoing commands, data storage

and retrieval, and the results of computations. The analysis showed

that 'the effective and essential assertions were in the last part of the

asserted code (the procedures that calculate the final commands to the

ailerons). This is not surprising since assertions placed earlier in

the code would not catch errors introduced later on. During deployment,

therefore, assertions placed in the procedures that calculate the final

commands will probably be the most effective for detecting errors.

To ensure that the greatest number of variables are directly or

indirectly tested, the dependency factor for each variable should be

calculated and the variables with the highest dependency number should

be included in the assertions [Andrews 86], This relationship between

assertion effectiveness and the data dependency factor of the variables

being tested should be of considerable help in writing good assertions

for detection of software or hardware faults.
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3.5 MAINTENANCE

During the maintenance phase, errors are corrected or enhancements

are implemented. After any changes, the code must be retested. This

phase is one of the most discouraging for programmers, primarily because

it is often so difficult to find anyone who knows anything about the

original code. It is much more of a problem to work on code written by

someone else than to start over.

The use of assertions should not be overlooked during maintenance.

Not only do they provide a form of documentation to help the programmer,

but they also simplify the retesting procedure. Since assertions can be

conditionally compilable, they are easily put back in the code when

needed again. When a software system is very large, recompilation of

the entire code is not feasible each time a change is made. In this

case, a separate version containing all the original assertions could be

maintained for use during retesting. The reason this is important is

that there is always the chance of error masking when redundancy of a

fault-tolerant system is still in place. Therefore, module and system

testing must be performed with redundancy disabled to make sure errors

are not covered up. Assertions used for testing in the earlier phases

can help locate new errors, as well as notify of problems in other areas

that may have been affected by updating the code.
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4 VARIATIONS IN TESTING SCENARIOS

There are many levels in which the methodology, as outlined in

Section 3, can be used for testing fault-tolerant software. These

variations will be presented in order, from the minimal levels to the

more complex. Presumably the more critical the application, the more

intensive the testing scenario.

1) Use assertions vigorously during software implementation for

debugging and then strip out of the code for remaining testing

phases. This is done by making assertions conditionally compilable.

In this way they can be used again during maintenance to make sure a

change in code in one area does not affect another area.

2) Use assertions for automation of the testing process during module

and system testing so a large number of test cases can be executed.

3) Use assertions to supplement other methods of error detection,

including hardware redundancy and proofs of correctness. A 4-5%

overhead can provide detection of errors that is worthwhile [Andrews

781.

4) Use assertions with recovery blocks to provide fault tolerance for

hardware and software errors. A 10 - 15% overhead can provide

detection as well as good recovery [Andrews 793.

5) Use assertions liberally and use a watchdog processor [Mahmood 85]

or a watchdog task [Ersoz 85] to reduce the overhead of executing the

assertions during deployment.
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5. SUMMARY

A methodology for testing fault-tolerant software has been

presented. Factors contributing to the development of this methodology

have been discussed, including the desirable characteristics of such a

methodology, various aspects of software testing, and problems inherent

in testing fault-tolerant software. The testing methodology for each

stage indevelopment and testing a real-time, fault-tolerant software

system is outlined. This covers the specification/requirements/design

phase; implementation of the code; all cycles of the testing cycle

(individual module tests, module integration tests, and system

integration testing); deployment; and maintenance. Variations in the

testing scenarios are also described as a help in making choices about

how much testing can be done.
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