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Abstract. Three-photon bimolecular absorption is a process which, through the simul- 
taneous absorption of three laser photons, resulrs in the demonic excitation of two 
molecules or atoms. Following a recent treatment of the selection rules, a quantum 
electrodynamical treatment is employed to describe the main features associated with the 
process and to produce an equation for the excitation rate. The dependence on photon 
polarization is investigated, and the magnitude of the excitation rate is estimated. It is 
shown that two different mechanisms operate, each with different selection rules and 
different dependences on intermolecular separation. In each case an energy mismatch is 
conveyed from one molecule to the other by means of virtual photon coupling. Some 
possible schemes for experimental study of the process are outlined. 

1. Introduction 

Bimolecular photoabsorption is a process which leads to the simultaneous electronic 
excitation of two molecules (or atoms). It is also known as synergistic, cooperative, 
collectiue or pair absorption. The excitation energy is generally provided by the 
absorption of one or two simultaneously absorbed photons. Both experiment and 
theory are well developed, and the two-photon case has been reviewed recently 
(Andrews and Hopkins 1990). It has also recently been suggested that one-photon 
processes of this type might account for features in the water vapour absorption 
continuum (Hudis et a1 1991, 1992). 

Although three-photon absorption in individual molecules and atoms is well docu- 
mented, bimolecular three-photon absorption has not yet been observed. However, a 
recent treatment of the selection rules for bimolecular absorption has included a study 
of the three-photon case and identified possible systems for its observation (Andrews 
and Bittner 1992). In this paper a quantum electrodynamical treatment is employed 
to describe the features associated with the process and to produce an equation for 
the excitation rate. 

In the process to be considered three photons of circular frequency o from a single 
laser beam have to provide a sum of the excitation energies for two molecules A and 
B (here and subsequently the term molecule may also signify an atom): 

A +  B+ 3fio +A*+ B*. (1) 

The corresponding energy levels are depicted in figure 1. To suppress conventional 
one-centre transitions, if they are not symmetry-forbidden, neither molecule should 
possess energy levels at multiples of the photon energy, Rw, 2fiw or 3Aw. 
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2. Derivation of rate equations 

The aim of the calculation is to find an equation for the absorption rate, expressed in 
a form which is readily interpretable. The starting point is the Fermi golden rule, 

r = zTPfl M ” I ~ /  h (2) 

where r stands for the absorption rate and M” is the quantum electrodynamical matrix 
element for the process. Here p, is the density of the final states, given by a convolution 
of the final state densities for A and B: 

~ , = ~ ~ ~ p , * ( E ) ~ ~ ( 3 h w - E ) d E .  (3) 

The matrix element is calculated from time-dependent perturbation theory with the 
aid of time-ordered diagrams, each of which represents a contribution to the quantum 
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probability amplitude for the overall process. The detailed basis for such calculations 
is described more fully elsewhere (Craig and Thirunamachandran 1984, Andrews et 
a1 1989). The diagrams to be employed here are constructed on the basis of neglecting 
wavefunction overlap between the molecules A and B, as is reflected in their separate 
state lines in the diagrams. It is important to note that in the Power-Zienau-Woolley 
formulation of quantum electrodynamics there are no interactions between molecules 
other than those mediated by the electromagnetic field, i.e. by the exchange of virtual 
photons (Power and Zienau 1959, Woolley 1971). 

In the most general case of three-photon bimolecular absorption 480 time-ordered 
diagrams should be constructed. We can divide them into two types defining two 
mechanisms, first where all three photons are absorbed at one molecule, secondly 
where two photons are absorbed at one and a third at the other molecule. There are 
240 diagrams of the first type, reducing in the case of single-beam excitation to 
240/3! = 40 because the three photons are indistinguishable. Similarly the 240 diagrams 
of the second type reduce to 240/2! = 120 in the single-beam case. Of these, half in 
each case are mirror images of the other half, in which the roles of A and B are 
interchanged. Examples are shown in figure 2. In each diagram the fourth photon 
propagating between A and B is a virtual photon which conveys the energy mismatch. 
So in three-photon bimolecular photoabsorption altogether five molecule-photon inter- 
actions occur, two of them involving the virtual photon. The possible partitions of this 
number, (4,l)  and (3,2), designate the two mechanisms. 

k.e k,e 4; k,e k , e f i k , e  

k,e 
A B A B 

(a) (b) 
Figure 2. Typical time-ordered diagrams for three-photon bimolecular absorption; 
(a) (4 , l )  mechanism; ( b )  (3,Z) mechanism. 

The absorptions taking place at either individuaI molecule are not energy conserving 
as it is assumed that there is no excited state at energy hw, 2 h o  or 3ho. Virtual photons 
are not energy conserving either. However, it is important to take account of the overall 
energy conservation: 

E,,+ E,,= 3ho. (4) . 
Here E,, and Epo denote the energy differences between the ground and excited state 
within A and B, respectively. 

Each molecule-radiation interaction in the time-ordered diagrams is assumed to 
occur via electric-dipole coupling, yielding the interaction Hamiltonian 

H;nt= -&o-lp.dL ( 5 )  

where p denotes the appropriate molecular dipole moment operator and dL the 
transverse electric displacement operator of the radiation field. 
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Since five interactions occur altogether, fifth-order perturbation theory is used to 
compute each matrix element. Using the quantum electrodynamical form of d' 
expressed in terms of annihilation and creation operators, the matrix elements pertain- 
ing to the time-ordered diagrams in figure 2 are given by 
M I ' . " = ~ ( ~ c ) ~ / ~ ( ~ E ~ v ) - ~ / ~  k3~'~n3/2e,ejek~lc, 

K e  

A rOA r r A  t i  A er B 60 X ~ X P ( ~ ~ ~ * R A + ~ K . R ) ~  x P, Pj Px PI Pm 
I S  I 

x (EO,+ ho)-'(Eo,+2hw)-'(Em, + Ep0)-'(Epo- ~ c K ) - '  ( 6 )  
MY2' = i ( h ~ ) ~ / ~ ( 2 ~ ~ V ) - ~ / ~  x k3/2~n3~2ejejekElcm 

K e  

r O A  r r B  tOA m s B  pr X ~ X P [ ~ ~ ~ . ( R A + R ) + ~ K . R ] ~  x x * P i  Pj P L ~  PI P m  
I ,  I 

X (EO,+ hw)-'(Eo, +2ho) - ' (E , ,  + Ep,)-'(Ee, - ~cK)-'. (7) 
The symbols used are: V for the quantization volume, k for the wavevector of the 

laser beam, K for the wavevector of the virtual photon, n for the number of real 
photons present in the quantization volume ( n  >> 1 is implied), e and E for the 
polarization vectors of real and virtual photons, RA for the position of molecule A, 
R =RB-RA for the distance vector between A and B. The implied summation conven- 
tion is used for the indices. The summed intermediate states r of molecule A are 
associated with energies E,, and transition dipole moments Apm; similar remarks apply 
to the other intermediate states s and t and to molecule B. 

The matrix element M"." comprises a sum of M'P." and all other 39 matrix elements 
for the ( 4 , l )  case. Similarly M(") contains 120 terms. These contributions are summed 
by a method which is outlined in the appendix, where the full results for M'"" and 
M'3.2) are also presented. Inserting these in the rate equation (2) then gives the following 
results for rC4,') and 
r ( 4 . 1 )  = ?rp,l3(4hc3&;)-' 

- - _  
X {eiejekene&p[ T$)ITT&P)~PLBP!O V( I ~ ) ( ~ O O  5 R )  V ; ~ , I ( @ ~ O  7 R) 
+ * f O  p o  so-no 

Ilk)t c.op)qPm P r  Vumi(%o, R) v ( q r ) ( W e o .  RI1 
+ 2 Re[e,e,eh~n.4~ppTp&~ T % ) q ~ ~ o $ ~ o  V,tml(wp0, R) 
x v(qr)(%o, R )  exp(-3ik-R)1} 

r(3.21 = ? r p , ~ 3 ( 4 h c 3 c ~ ) - ' { e , e , e k ~ ~ ~ " ~ p  

x [x?&XT&S~~$~  V(rm)(wpo-~, R )  v d m p o - m ,  R) 
+X~~)I~~;)~~~~.~.?~,I~I(O,O-O, R) V ( q r ) ( w , o - ~ ,  R)1 
+ 2 Re[ ete,exgn%zfi$ 12 f;o)q sf,?$.? v, im I( woo - R) . 
x qqrl(weo-o,R) exp(-Zik.R)]} (9)  

where I = nhc2k/ V is the irradiance of the laser beam, ma0 = Ea0/ 17, wpQ = EpQ/ h and 
v(b)(W, R) = hC(2&oV)-' 1 1 K E , E j  

* e  
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is the virtual photon coupling tensor (which is index symmetric, as denoted by the 
brackets around the indices, and also symmetric with respect to inversion of R)t:  R 
is the unit displacement vector of B with respect to A. In passing we note that only e 
and y,,, can take complex values, all other parameters are real. The molecular tensors 
are defined by 

(11) SGo=x[Apf'ApIo(Ea,- hw)- '+  A pi r O A  pj a, (Eo,+hw)-'] 

A rOA r r A  ols 
X $ = x  P, pj pk (E0,+hw)-'(E0,+2hw)-'  

I S  

+ A P ; O A p y A  S I  

A s r A  a r A  rO 

p k  (Eo,+ ho)-'(E,, - hw)-' 

(12)  + Pi PJ pk (Ea,-Zhw)-'(Eas- hw)-']  

T;:i=x Z x[ pj pj p e  pi (Eo,+ho)-'(Eo,+2hw)-'(Eo,+3ho)-' A rO A sr A fs A er 

, l *  

+ApIo A p ~ A p ~ f A p ~ ( E O , +  hw)"(Eo,+2hw)-'  

x (Bat - Aw)-'+ApIOApF Apt'Ap;'(Eo,+ nu)-' 

~ ( E , , - Z h w ) - ' ( E , , - h w ) - ' + ~ ~ L j ' ~ / 1 ; I ~ ~ ~ ~ p L ; '  

x(E,,-3hw)-'(E,,-2ho)-'(E,, -hw)- ' l .  (13) 

Herex,gp,*canbeidentifiedwith!(X~~++X,9*0)and T&with;(T$+ T$I+T$,+ T$+ 

The rate equations as given above are valid for a rigid orientation of the laser beam 
with respect to both molecules. If the sample in question is fluid, a rotational average 
of the photon polarization vector e has to be performed. The result will then hold for 
the 'rotating pair' case of two molecules A and B whose mutual orientation is fixed; 
this includes also the case of two chromphores A and B in one large rigid molecule. 
If the molecules A and B are free to change their mutual orientation, for example in 
a liquid or gas, a further average of all molecular tensors pertaining to A is necessary 
and finally an average of the molecular tensors belonging to B. Here the sequence of 
the triple averaging is not important. 

T @ +  T$J. 

3. Near-zone contributions in fluids 

The near-zone is defined by R c< A = 27rc/w = 27r/k, i.e. the distance between the 
molecules should be much smaller than the, photon wavelength, a condition which 
results in a markedly enhanced bimolecular absorption rate. From a practical point 
of view, the near-zone corresponds to two closely spaced molecules without substantial 
wavefunction overlap. From a theoretical viewpoint, the matrix element phase factors 
reduce to 

exp(-2ik.R) = 1 =exp(-3ik-R) (14) 

t In the two-photon case (Andrews and Hopkins 1990) Vk, incorrectly appeared as vki i n  equation (5.13). 
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which leads to considerably simplified calculations of the averaged rates. In this region 
the virtual photon coupling tensor also reduces to Coulombic coupling; hence it is not 
retarded, not dependent on w, um0 or uPo, and it is real: 

D L Andrews and A M Biftner 

VCii)= =(4?re0R3)-'(6~ -3kjRj) (15) 

from which we can infer an R-6 range dependence of the process rate. 
The first rotational average of equations (8) and (9) is now obtained using standard 

procedures. These will hold per se for the case of a 'rotating pair'. The result for the 
(4.1) mechanism is: 

( r y  = ~ / 3 5 ( s ~ ~  -3RtRk)(~jj  -3RjRj) 

X KT?:nni;F?:oo1j(6~ -3 )  + TA1tC%olj(-37 + 511 

x/"k / " i  
-'O+ I. ~ f % m 1 t ~ ? ~ 0 0 ) l ( 6 ~  - 3) + Timn0it PO 

x %k)j(-37+ 5 ) l ~ t ~ k T ~ + 2 [  77%n,i?%467-3) 

+ T?,k)i F%]j(-37 + 5 ) l ~ f ~ f i ? ~ I  (16) 

where 

L =  p,13(64rhc3~~R6)-'  (17) 

and the polarization parameter 

q =(e.  e ) ( p * p )  =$[ I +cos(2a)] 

where a =O" for linear and *90° for circular polarization, and hence q = 1 and 0, 
respectively. Inspection of equation (16) reveals that it is not possible to obtain a zero 
value for the rate merely by choice of polarization; however, the terms connected with 
(67 -3 )  will be zero if an elliptical polarization of *45" is employed. 

The result for the (3,2) mechanism is: 

~ r ~ 3 ~ 2 ~ ) = ( ~ / 1 0 5 ) ~ s i k - 3 ~ , R k ) ( s j r - 3 R j R i ~  
x{[47-2l[X~~m]ix(.~]j -=o s P ? s P o  nA 01 

+xf:m)i2f,$,s::s:10+ 2x;:ml,2::l,sE:,"SOdPI 
-a0 S B O ~ P O + ~ ~ C  -@O , s = O p O  

+[29-1][X?~m]tk'(nn]j ok al mmlcX(nn1) ok ol 

+ 2 x ( m m ] i x ( n n ) j  clo -@O S P o s " o ] + [ 8 ~  ok 01 -~][x?:",,~?~~:,",,S~~S~; 

+ X ( m n ] , X ( n o ) )  mk d X ( m n l & ' ~ n o l ~  mk 01 

+ [47 -2I[X(mn)iX(oo), mk nl 

PO - P O  , s " o p o + 2  00 -00 SBOpo] 

00 -00 s P o ~ P o + x ~  -PO ps;; 
+2xp:~~j~f~bo, , jsa~101+~-~7+51~X;:nl ,X~mnl,  - 0 0  s p o ~ @ o  Ok 01 

+ X ( m n ) i X ( m n l j  Po . -00 s " ~ ~ " ~ + 2 x p ~ " l l ~ ~ : " l j s ~ ~ ~ ; ]  ok al 

-eo s P o s P o + x ~  -BO S"og"0 

+ zxP:"linf~ljs!~~~~l~ (19) 

mn)iX(oo)j 

+[-6q + 10I[X$n)iX(no]j ox mi malixinoi,  ok mi 

which is non-zero for all polarization arrangements. With *45" elliptical polarization, 
one may again effectively 'switch off some of the rate contributions. 
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4. Longer range contributions in fluids 

At longer distances where the condition R<< A does not hold, the simplifications given 
in section 3 do not persist and the rotational average(s) lead to very complicated 
results. Fortunately the most important features, especially the dependence on 
molecular separation R and polarization, can be recovered without reference to the 
detail of the average. In the following paragraphs we will distinguish between the first 
two (diagonal) contributions to equations (8) and (9) which may be signified by AAlBB 
and BBl AA and the interference contributions ABIBA. 

D L Andrews and A M Bittner 

4.1. Diagonal terms 

The first two terms in equations (8) and (9) are not associated with a phase factor and 
hence average to expressions very similar to their analogues, equations (16) and (19) 
for the rotating pair and (20) and (21) for free molecules. However, the fully retarded 
form of coupling must now be employed and this is reflected in the appearance of a 
term Ki i ,  qv), representing an excitation transfer function, after the triple average. For 
the (4 , l )  mechanism it leads to 

with KA=w,,/c, K B = w p O / c  and 

Q(K,  R)  =(4moR3)-’ exp(iKR). (24) 

Equations (22) and (23) can be identified with the familiar transfer functions A(&, R) 
and A(&, R). These give rise to identifiable retardation features in the theory of 
intermolecular electronic excitation transfer and as such have been extensively dis- 
cussed elsewhere (Andrews and Juzeliiinas 1992). For the (3,2) mechanism ( K , - k )  
and (KB- k) are used in place of KA and KB. 

4.2. Interference rems 

The last terms in equations (8) and (9) are quantum mechanical interference terms 
which arise only under certain selection rule conditions, as we discuss in section 5. 
Since these terms include phase factors, they have to be subjected to so-called phased 
averaging (Andrews and Harlow 1984). 

The first (phased) average leads to a rotating pair rate which is expressible as a 
sum of terms involving the spherical Bessel functions j, with Os m s 6 .  Specifically, 
these are j,(3kR) for the (4 , l )  mechanism and j,(2kR) for the (3,2) mechanism. The 
terms which multiply each j ,  comprise products of scalar parameters associated with 
molecular response and polarization conditions. These scalars are derived through 
contractions both of the molecular and the polarization tensors with isotropic tensors 
of rank (6+ m ) .  In turn, the isotropic tensors are expressible as products of Kronecker 
delta tensors (together with one Levi-Civita antisymmetric tensor in the odd m cases). 
It is worth noting that for kR<< 1 the term with j,= 1 strongly dominates the rate 
leading to the near-zone behaviour discussed in section 3. For medium-range distances 
O<< kR < 1 it is only the j, term which can give any significant additional contribution. 



Three-photon bimolecular absorption 683 

For any plane or circular polarization, the polaGzation parameters acquire only 
two different values, 1 and 7, for even m, but 0, 5 = k . ( e  A e) and 7< for odd m (note 
that 7 = 1 + <'). It is significant that in the Latter, odd m, case all polarization parameters 
are zero for linear polarization and are non-zero but with opposite signs for left- and 
right-handed circular polarization. The conclusion is that circular dichroism appears 
when a rotating pair of molecules or chromophores is irradiated under the condition 
kR>>O. It is however a very weak effect which would most likely require use of 
polarization modulation techniques for its detection. In passing we note that exactly 
the same considerations apply to one- and two-photon bimolecular absorption. 

For free molecules the corresponding results are obtained from further rotational 
averages discussed in the previous section. Here the picture changes: for odd m these 
(non-phased) averages result in a contraction of each coupling tensor product yy)qhr) 
with a combination of a Levi-Civita tensor and one or three unit vectors R, which is 
easily shown to yield a zero result. So contributions from even m alone arise, and no 
circular dichroism is possible. For even m the coupling tensor combination yu)qh,, 
is contracted as foll%ys: for m = 0 with three %op^ecker deltas 'SSS', for m = 2 
additionally with ' SSRR ' ,  for m = 4 also with 'SRRRR', and for m = 6 furthermore 
with 'RRRRRR'. It is evident that apart from equations (22) and (23) only the following 
four excitation transfer functions arise?: 

* - * A * ^  

Y u ) ( ~ p o ,  R)qg1(wmo, R )  
= 2Q( KB - KA, R)[3  - 3i(KB - KA)R + (3KAKB - K a  - K ; ) R 2  

-i(KB- K A ) K A K B R 3 + K h K ~ R 4 ]  (25 )  

(26) V ( d w p o ,  R )  VW)(,,C.~O, R ) = ~ Q ( K B - K A ,  R)[K?AK;R"I 
associated with jo,  j , ,  j ,  and j 6 ,  and 

V,g(w,o, R )  q i r ) ( w D o ,  R)Sj& 

= V(y)(~,o,  R)qn)(u,o, R ) @ $ A ~  

= Y9)(w,o, R)qrr)(%o, R ) & i j & k k , k +  
=4Q(KB-KA, R ) [ 1  -i(KB - KA)+ KAKBR2]  (27) 

V,y)(wpo,  R ) q w ) ( w e o ,  R)E,Ej =4Q(KB- K,, R)[K:R2- iK:KBR3]  (28) 
associated with j 2 ,  j a  and j 6 .  Once again for the (3,2) mechanism (KA- k )  and (KB- k )  
have to be used in place of KA and KB. All of the above transfer functions also arise 
in connection with two-photon absorption and Raman bimolecular processes (Andrews 
and Blake 1990). 

4.3. Range dependence 

In  order to illustrate the range dependence, we concentrate on the case of two identical 
molecules with identical excited states, i.e. A = B and E,, = E,,, setting K A  = KB = K 
and 3k =2K. The argument of the spherical Bessel functions is 3kR = 2KR in the (4,l) 
case and 2kR =$U? in the (3,2) case. Also in equations (25)-(28), the Q function 
defined by equation (24) now has an argument Q ( K  - K, R )  = Q(0, R )  and hence 
becomes real. Although there remains an imaginary term in equation (28), it does not 

t An error in the sign of the R' term in equation (25) appeared in Andrews and Blake (1990). 
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contribute to the eventual rate equations as only the real part of the interference terms 
has to be taken (see equations (8) and (9)). Hence, as is necessary, the final result is 
an entirely real quantity. 

Under these conditions, the excitation transfer functions given by equations (22), 
(23) and (25) now become equal, so that only four different transfer functions arise. 
Invoking the R-6 dependence of Q(0, R ) ,  they may be displayed as: 

A(K, R) =2(4.rrao)-’(3+ K2R2+ K4R4)/R6 (29) 

A‘(K, R) =4(47ra0)-’K4/R2 (30) 

A‘(& R ) = 4 ( 4 . r r ~ ~ ) - ~ ( l + K ~ R ~ ) / R ~  (31) 
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A”‘(K, R) =4(4.nao)-*K2/R4. (32) 
As given above, these equations are valid for the (4,l)  case; for the (3,2) mechanism, 
K is simply replaced by K - k = fK. The transfer function A( K ,  R) has already been 
defined in section 4.1; it is also included in the diagonal terms. The interference terms 
compriseA(K,R)jo,A’(K,R)joandfor m=2,4,6alsoA”(K,R)jm andA”’(K,R)j,. 
It is therefore evident that the rate contributions associated with A“ and A “  contribute 
very little if kR < 1; due to the higher orders of j, with which they are associated, 
they are important only for large distances. 

Generally the rate contribution governed by the transfer function A will exceed all 
other terms, although for certain distances in the intermediate range the range depen- 
dence may be marginally modified by the additional Contributions from the A xj, and 
A‘xj, cross-terms, if allowed by the selection rules. Hence we can conclude that it is 
entirely justified to neglect any contributions to the overall rate of absorption from 
transfer functions other than A. This argument applies to the three-photon process 
under consideration here, and for similar reasons to one-, two- or any other multiphoton 
bimolecular processes. 

5. Selection rules 

For determining the selection rules one has to take account of the symmetry properties 
of the molecular tensors which feature in the rate equations. For the rotationally 
averaged rate equations, the symmetry of the Levi-Civita tensors must also be taken 
into account. Equations (8) and (9) show that in the (4,l) process the T tensor and 
the transition dipole moment + arise, in the (3,2) process the ,y and S tensors. Both 
equations show a common principal structure which may be abbreviated to mIpp 
for the (4 , l )  case and ,y,ylSS for the (3,2) case. Both also comprise three terms which 
differ with respect to the tensor ordering; as above they may be signified by 
AAIBB, BB[AA (diagonal terms) and AB[BA (interference terms). 

Using irreducible tensor methods, one can assign weights to the tensors: p trans- 
forms as a polar vector and so possesses weight (-1); S transforms as a second rank 
tensor and has weights (+2), (+l), (+O); ,y is a third rank tensor symmetric in two 
indices, and has weights (-3), (-2), (-1); the fourth rank tensor T has weights (+4), 
(+3),  (+2), (+I), (+O). The transitions in A and B may now be assigned to an irreducible 
representation of each applicable point group. Different combinations of the tensor 
weights can transform under the various irreducible representions of each point group, 
and the various possibilities are listed elsewhere (Andrews 1990). A transition in 
molecule A whose assigned irreducible representation contains for example weight 
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(+O)  or (+1) or (+2) is termed A+(012). It now becomes evident that in both mechanisms 
for bimolecular three-photon absorption, assuming that A and B are either chemically 
different or are at least promoted to different excited states, then for the majority of 
possible cases a single diagonal term AA I BB (or BB I AA) alone is present. The selection 
rules thus deduced are 

(4 , l )  mechanism: A+(01234), B-(l) (33) 

(3,2) mechanism: A-(123),8’(012). (34) 
In the case of the ( 4 , l )  mechanism the above rule (33) relates to the first term of 

equation (8), and a counterpart in which the roles of A and B are exchanged applies 
to the second term. The third AB] BA term can clearly arise only when the transitions 
of both A and B satisfy both conditions (33). It may also be noted that the further 
symmetry constraints on this term which arise in the case of free molecules necessitate 
satisfaction of the condition +( 1) A -(1) by both molecules, where the symbol A denotes 
the logical AND operator. This amounts to a requirement for both (Y and p excited 
state representations to span both translation and rotation components. For the (3,2) 
mechanism whose rate results from equation (9), similar arguments apply with respect 
to the conditions (34). Here, in the case of free molecules, the interference term can 
only persist if both molecular transitions fulfil the condition +(012) A -m. 

For both mechanisms it is transparent that appearance of the interference term 
necessitates the presence of contributions from all three terms AAIBB, BBIAA and 
ABIBA. In a previous paper (Andrews and Bittner 1992) the selection rules (33) and 
(34) have been applied to molecular point groups and a comprehensive table of allowed 
transitions given. 

6. Discussion 

One of the first considerations has to be the likelihood of observing bimolecular effects 
in connection with the intrinsically weak process of three-photon absorption. A number 
of ameliorating factors needs to be considered. First, it has been demonstrated in 
several earlier treatments of bimolecular absorption that the rate displayed by pairs 
of molecules in close proximity should approach the magnitude of a single-centre rate: 
such arguments apply with equal force to the three-photon case. It should be borne 
in mind that the assumption in the detailed theory of electric dipole coupling is 
appropriate only when the molecular separation exceeds the molecular dimensions; 
this however is consistent with the neglect of wavefunction overlap. A second and 
more positive factor in favour of three-photon bimolecular excitation is the possibility 
of selecting a chemical system in which the selection rules for one or both of the 
mechanisms militate against any other kind of excitation at the laser wavelength 
employed. 

Thirdly the cubic dependence of the system rate on irradiance has a special 
significance with the continued trend towards lasers with higher levels of output. The 
fifth-order perturbation theory which underlies the three-photon bimolecular mechan- 
isms discussed above is valid for beam intensities I up to those levels I - IM = 

W m-’ where the associated electric fields approach the magnitude of the internal 
molecular fields associated with bonding (Eberly et al 1987). Below these intensity 
levels the three-photon rate will be smaller than the corresponding one-photon rate 
by a factor typically of the order ( I / I M ) 3 ,  if both processes are permitted by the 

1018i4 
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selection rules. Current laser instrumentation allows the production of focused intensity 
levels for which ( I / I M ) ’  is only one or two orders of magnitude below unity, such 
that detection of the three-photon bimolecular process is perfectly viable and the 
perturbative treatment of the theory remains fully appropriate. 

Fourthly, there is the possibility of exploiting near-resonance conditions in order 
to obtain rate enhancement, typically by several orders of magnitude. Indeed, more 
such possibilities arise in the three-photon case than in processes involving fewer 
photons, as illustrated in figure 1 (note that the broken and dotted lines correspond 
to furry resonant levels which should be avoided if their energy equals multiples of 
the photon energy h o ) .  One additional point to consider is the possibility of two-colour 
(or three-colour) excitation, which although not treated in the theory described in this 
paper clearly carries many further possibilities for rate enhancement by the exploitation 
of resonance amplification. 

Possible chemical systems in which bimolecular absorption might be characterized 
have been discussed at length in our recent paper (Andrews and Bittner 1992). Although 
a few somewhat esoteric cases were,singled out to exemplify the three-photon case, 
in fact any of the schemes we discussed for the one-photon case would also be viable 
for three-photon study, given of course the appropriate longer-wavelength laser. More 
significantly, any of the numerous experimental instances of cooperative one-photon 
absorption would also be appropriate for three-photon study. Of the various means 
by which such a process might be observed, obvious candidates are laser-induced 
Buorescence or ionization detection, or a scheme involving optical-optical double 
resonance. A more novel possibility, particularly appropriate for systems with relatively 
discrete energy levels, would be to look for generation of a ($) harmonic of the input 
frequency, produced by superradiant decay from the states populated by the excitation 
scheme. 

D L Andrews and A M Bittner 

Acknowledgement 

One of us (AMB) gratefully acknowledges financial support from the Deutscher 
Akademischer Austauschdienst (DAAD). 

Appendix. Summing the matrix element contributions 

Summing the matrix element contributions associated with the numerous time-ordered 
diagrams of which figures ? ( a )  and ( 6 )  are representative members entails collecting 
together all terms with a combination of transition moment components which is the 
same for both molecule A and for B. Each term has a denominator expressed as a 
product of four factors; each factor is the difference of the intermediate (system plus 
radiation) state energy from the initial state energy. In cases where the virtual photon 
creation and annihilation events are not temporally adjacent, more than one of these 
factors will entail the virtual photon energy. The use of partial fractions and the overall 
energy conservation relation (4) nonetheless enables the virtual photon energy to be 
eliminated from every denominator save one which is of the form (Eao* ~ C K )  or 
(Epo+ ~ c K ) .  Use of equation (10) enables pairs of similar terms involving these factors 
to be added and recast in terms of the virtual photon (retarded resonance electric 
dipole-electric dipole) coupling tensor. Finally by introducing the molecular response 
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