19 research outputs found

    Enzymatic hydrophobic modification of jute fibers via grafting to reinforce composites

    Get PDF
    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.This work was financially supported by the National Natural Science Foundation of China (51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26) the Fundamental Research Funds for the Central Universities (JUSRP51312B, JUSRP51505), and the Graduate Student Innovation Plan of Jiangsu Province of China (SJLX_0527)

    Influence of hematite nanorods on the mechanical properties of epoxy resin

    No full text
    The mechanical properties of nanocomposites obtained by incorporation of fairly uniform hematite nanorods (α-Fe2O3 NRs) into epoxy resin were studied as a function of the content of the inorganic phase. A thorough microstructural characterization of the α-Fe2O3 NRs and the nanocomposites was performed using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The TEM measurements revealed rod-like morphology of the nanofiller with a uniform size distribution (8.5 nm×170 nm, diameter×length). High-magnification TEM and AFM measurements indicated agglomeration of α-Fe2O3 NRs embedded in the epoxy resin. Stress at break, strain at break, elastic modulus and tensile toughness of the nanocomposites were compared with the data obtained for pure epoxy resin. Significant influence of nanofiller on the mechanical properties of epoxy resin, as well as on the glass transition temperature, could be noticed for samples with low contents of the inorganic phase (up to 1 wt. %)

    Investigation of sorption behavior of Cu(II) and Pb(II) onto a novеl EDTA modified copolymer

    No full text
    A new metal-chelating glycidyl methacrylate based macroporous copolymer with ethylenediaminetetraacetic acid functions was tested as a potential Cu(II) and Pb(II) ions sorbent from aqueous solutions. The sorption was studied in non-competitive batch experiments, by varying initial pH and metal concentration, contact time and temperature. Pseudo-first and pseudo-second order model, as well as Bangham, intra-particle and liquid film diffusion models were used to determine the nature of sorption kinetics and the rate of limiting step. Equilibrium sorption data were analyzed with Langmuir, Freundlich, Temkin and Elovich isotherm models

    Flexible lead-free NBT-BT/PVDF composite films by hot pressing for low-energy harvesting and storage

    No full text
    The idea of this work is finding the way to efficiently and safely use mechanical energy released in small quantities around us to power up small-scale electronic devices used in everyday life. To this purpose, flexible lead-free piezoelectric composite films were prepared by hot pressing. Different amounts (30, 35 and 40 vol%) of lead-free piezoelectric material bismuth sodium titanate-barium titanate were embedded in the matrix of polyvinylidene fluoride under carefully optimized conditions of temperature and pressure, obtaining flexible films with quite homogeneous distribution of piezo-active filler. ATR-FTIR analysis revealed that hot pressing the flexible films caused a transformation of electro-inactive PVDF alpha-phase into electro-active beta and gamma phases. Dielectric measurements showed an increase of the permittivity up to 80 with the active phase increasing. Anelastic measurements showed that the elastic modulus increases as well with the fraction of active ceramic phase. Lastly, obtained flexible polymer-composites demonstrated notable properties both for energy storage and energy harvesting application, showing up to 74% of energy storage efficiency and, from testing of the force impact, up to 9 V and similar to 80 mu W of output voltage and power

    Kinetics and thermodynamics of Mo(VI) and Re(VII) sorption on amino-functionalized magnetic polymer

    No full text
    Kinetics and thermodynamics of Mo(VI) and Re(VII) sorption onto amino functionalized magnetic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [mPGME-deta] at 298 K and pH=4.0 were investigated. It was shown that Mo(VI) and Re(VII) sorption obeys the pseudo-second-order model with evident influence of pore diffusion. The maximum sorption capacity of 60 mg/g for Mo(VI) and 47 mg/g for Re(VII) were observed. Thermodynamic studies implied an endothermic and spontaneous process in nature

    Novel magnetic polymer/bentonite composite

    Full text link
    A novel magnetic polymer/bentonite composite was prepared by suspension copolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in the presence of magnetic bentonite (MB-PGME) and functionalized with ethylene diamine and hexamethylene diamine (MB-PGME-ED and MB-PGME-HD). The obtained samples were characterized in terms of structure as well as thermal, magnetic and morphological properties. The sorption of rhenium (Re) and tungsten (W) from aqueous solution onto MBPGME-ED and MB-PGME-HD was investigated considering their contact time and different initial ion concentration, giving possibility for usage of these composites as commercial sorbents. The sorption system follows the pseudo-second order and intraparticle diffusion kinetic models. The results indicated a better fit with the Freundlich isotherm model

    Novel Magnetic Polymer/bentonite Composite: Characterization and Application for Re(VII) and W(VI) Adsorption

    Get PDF
    A novel magnetic polymer/bentonite composite was prepared by suspension copolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in the presence of magnetic bentonite (MB-PGME) and functionalized with ethylene diamine and hexamethylene diamine (MB-PGME-ED and MB-PGME-HD). The obtained samples were characterized in terms of structure as well as thermal, magnetic and morphological properties. The sorption of rhenium (Re) and tungsten (W) from aqueous solution onto MB-PGME-ED and MB-PGME-HD was investigated considering their contact time and different initial ion concentration, giving possibility for usage of these composites as commercial sorbents. The sorption system follows the pseudo-second order and intraparticle diffusion kinetic models. The results indicated a better fit with the Freundlich isotherm model

    Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites

    Full text link
    Dynamic mechanical-thermal analysis (DMTA), differential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) were employed to investigate in detail glass transition and polymer dynamics in silver/poly(methyl methacrylate) (Ag/PMMA) nanocomposites. The nanocomposites were prepared by radical polymerization of MMA in the presence of surface modified Ag nanoparticles with a mean diameter of 5.6 nm dispersed in chloroform. The fraction of Ag nanoparticles in the final materials was varied between 0 and 0.5 wt%, the latter corresponding to 0.055 vol%. The results show that the nanoparticles have practically no effect on the time scale of the secondary ß and ¿ relaxations, whereas the magnitude of both increases slightly but systematically with increasing filler content. The segmental ¿ relaxation, associated with the glass transition, becomes systematically faster and stronger in the nanocomposites. The glass transition temperature T g decreases with increasing filler content of the nanocomposites up to about 10 °C, in good correlation by the four techniques employed. Finally, the elastic modulus decreases slightly but systematically in the nanocomposites, both in the glassy and in the rubbery state. The results are explained in terms of plasticization of the PMMA matrix, due to constraints imposed to packing of the chains by the Ag nanoparticles, and at the same time, of the absence of strong polymer-filler interactions, due to the surface modification of the Ag nanoparticles by oleylamine at the stage of preparation. © 2011 Elsevier Ltd. All rights reserved.JLGR acknowledges the support of the Spanish Ministry of Science and Innovation through project No. EUI2008-00126 and funding in the Centro de Investigacion Principe Felipe in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation).Pandis, C.; Logakis, E.; Kyritsis, A.; Pissis, P.; Vodnik, VV.; Dzunuzovic, E.; Nedeljkovic, JM.... (2011). Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites. EUROPEAN POLYMER JOURNAL. 47(8):1514-1525. https://doi.org/10.1016/j.eurpolymj.2011.06.001S1514152547
    corecore