552 research outputs found

    Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation

    Get PDF
    Controlled environment agriculture in greenhouse is a promising solution for meeting the increasing food demand of world population. The accurate control of the indoor environmental conditions proper of greenhouses enhances high crop productivity but, contemporarily, it entails considerable energy consumption due to the adoption of mechanical systems. This work presents a new modelling approach for estimating the energy consumption for climate control of mechanically ventilated greenhouses. The novelty of the proposed energy model lies in its integrated approach in simulating the greenhouse dynamics, considering the dynamic thermal and hygric behaviour of the building and the dynamic response of the cultivated crops to the variation of the solar radiation. The presented model simulates the operation of the systems and the energy performance, considering also the variable angular speed fans that are a new promising energy-efficient technology for this productive sector. The main outputs of the model are the hourly thermal and electrical energy use for climate control and the main indoor environmental conditions. The presented modelling approach was validated against a dataset acquired in a case study of a new fully mechanically controlled greenhouse during a long-term monitoring campaign. The present work contributes to increase the knowledge about the dynamics and the energy consumption of greenhouses, and it can be a valuable decision support tool for industry, farmers, and researchers to properly address an energy efficiency optimisation in mechanically ventilated greenhouses to reach the overall objective of decreasing the rising energy consumption of the agricultural sector

    Measurements for restorative dentistry: shrinkage and conversion degree of bulk-fill composites

    Get PDF
    The paper deals with a measuring approach based on Raman Spectroscopy and micro-CT imaging for correlating the degree of conversion of bulk-fill composites to the contraction shrinkage and consequently to the internal gap formation in high c-factor dental cavities. The developed study was performed on extracted molars in which a first-class cavity was prepared. A micro-CT scan was performed before and after composite lightcuring to tridimensionally measure the interfacial gap between the composite material and the cavity walls. After the complete polymerization of the composite, each sample was sectioned vertically to expose the lateral surface of the restorative material. Raman Spectroscopy measurements were performed along the cross-section of the cavity filled with the restorative material, every 0.5 mm from the occlusal surface. The obtained results showed a minimal gap opening after light-curing and a degree of conversion which was not affected by the bulk-fill composite thickness. Thanks to the 3D rendering, it should be observed that gaps were mostly concentrated at the cavity floor and despite the reduction in the degree of conversion detected in the deeper portions of the restoration, a three-dimensional opening of an interfacial gap was not observed. Therefore, it is possible to assume the presence of a correlation between the degree of conversion and the volumetric interfacial gap could. Further studies are actually in progress to compare these preliminary results with those obtained on other dental composite materials

    Automatic Path Planning for Unmanned Ground Vehicle Using UAV Imagery

    Get PDF
    Field machines play an important role in the management of agricultural environments. Increasing use of automated machines in precision agriculture has gained significant attention of farmers and industries to minimize human work load to perform tasks such as land preparation, seeding, fertilizing, plant health monitoring and harvesting. Path planning is considered as a fundamental step for agricultural machines equipped with autonomous navigation system. For mountain vineyards, path planning is a big challenge due to terrain morphology and unstructured vineyards. This paper proposes a workflow to generate an automatic coverage path plan for unmanned ground vehicles (UGVs) using georeferenced imagery taken by an unmanned aerial vehicle (UAV). First, image acquisition is performed over a vineyard to generate an orthomosaic and a digital surface model, which are then used to identify the vine rows and inter-row terrain. This information is then used by the algorithm to generate a path plan for UGV

    Relationship between polyamines and paraquat toxicity in sunflower leaf discs

    Get PDF
    Polyamines have been reported as efficient antioxidant compounds in plants. Sunflower leaf discs, treated with 100 μM paraquat (PQ), a well known oxidative stress inducer, showed decreased levels of putrescine (Put), spermidine (Spd) and spermine (Spm) (between 33% and 80% with respect to the controls). Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities decreased 42% and 33% respectively. Among the markers of oxidative stress measured after PQ treatment, chlorophyll and glutathione content were reduced (30% and 49% respectively) and thiobarbituric acid reactive substances (TBARS) content increased (60%). Superoxide dismutase (SOD) activity declined 60% with respect to the control and lipoxygenase (LOX) increased 25% when leaf-discs were treated with the herbicide. Pretreatment with exogenous polyamines (1 mM) reversed paraquat toxicity to different degrees according to the polyamine and/or the tested parameter. Spermidine was able to inhibit chlorophyll loss, while Spm reverted the effect of PQ on the level of TBARS almost completely and also restored SOD activity close to control values. Putrescine was the least effective as an oxidant protectant. These results provide support for the argument that polyamines are effective antioxidants through their ability to act as radical scavengers.Fil: Benavides, Maria Patricia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gallego, Susana Mabel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Comba, María E.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Vegetal; ArgentinaFil: Tomaro, Maria Lujan. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Inner approximated reachability analysis

    Get PDF
    International audienceComputing a tight inner approximation of the range of a function over some set is notoriously di cult, way beyond obtaining outer approximations. We propose here a new method to compute a tight inner approximation of the set of reachable states of non-linear dynamical systems on a bounded time interval. This approach involves a ne forms and Kaucher arithmetic, plus a number of extra ingredients from set-based methods. An implementation of the method is discussed, and illustrated on representative numerical schemes, discrete-time and continuous-time dynamical systems

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    SIMPLE SUMMARY: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. ABSTRACT: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Get PDF
    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle
    • …
    corecore