468 research outputs found

    Vertical spinal electronic device with large room temperature magnetoresistance

    Get PDF
    We report experimental transport measurements of a vertical hybrid ferromagnetic (FM)/III-V semiconductor (SC)/ferromagnetic(FM) type structure, i.e., Cr(20ML)/Co(15ML)/GaAs(50 nm, n-type)/Al/sub 0.3/Ga/sub 0.7/As(200 nm, n-type)/FeNi(30 nm). The current-voltage (I-V) characteristics reveal Schottky/tunneling type behavior in the direction of FeNi/Semiconductor/Co and observed to be dependent on external magnetic field. The magnetoresistance (MR) behavior shows a strong dependence on the measured current and field. At low fields no significant change in MR has been observed with increasing current. However, at high fields the MR initially increases with increasing current and becomes stable beyond a critical current of 10 /spl mu/A. A maximum of 12% change in the MR has been observed at room temperature, which is far larger than that of the conventional AMR effect. This property of the device could be utilized as field sensors or magnetic logic devices

    International Legal Scholarship in Canada

    Get PDF
    International law scholarship in Canada is largely limited to a small group of decentralized writers facing a vast and ill-defined field. In those areas in which significant work has been undertaken - the law of the sea, for example - Canadian scholarship is limited by a commitment to a national perspective rather than a recognition of the interests of the global community. The work is largely descriptive, and avoids a deeper theoretical analysis. International law is seen as a fringe discipline, and is presently unable to support the specialized effort necessary to produce the fundamental research that is badly needed if the significance of the area is to be recognize

    Intermittent Calf Compression Delays the Onset of Presyncope in Young Healthy Individuals

    Get PDF
    Orthostatic fluid shifts reduce the effective circulating volume and thus contribute to syncope susceptibility. Recurrent syncope has a devastating impact on quality of life and is challenging to manage effectively. To blunt orthostatic fluid shifts, static calf compression garments are often prescribed to patients with syncope, but have questionable efficacy. Intermittent calf compression, which mimics the skeletal muscle pump to minimize pooling and filtration, holds promise for the management of syncope. We aimed to evaluate the effectiveness of intermittent calf compression for increasing orthostatic tolerance (OT; time to presyncope). We conducted a randomized single-blind crossover study, in which participants (n = 21) underwent three graded 60° head-up-tilt tests to presyncope with combined lower body negative pressure on separate days. Low frequency intermittent calf compression (ICLF; 4 s on and 11 s off) at 0–30 and 0–60 mmHg was applied during two tests and compared to a placebo condition where the garment was fitted, but no compression applied. We measured continuous leg circumference changes (strain gauge plethysmography), cardiovascular responses (finger plethysmography; Finometer Pro), end tidal gases (nasal cannula), and cerebral blood flow velocity (CBFv, transcranial Doppler). The 0–60 mmHg ICLF increased OT (33 ± 2.2 min) compared to both placebo (26 ± 2.4 min; p < 0.001) and 0–30 mmHg ICLF (25 ± 2.7 min; p < 0.001). Throughout testing 0–60 mmHg ICLF reduced orthostatic fluid shifts compared to both placebo and 0–30 mmHg ICLF (p < 0.001), with an associated improvement in stroke volume (p < 0.001), allowing blood pressure to be maintained at a reduced heart rate (p < 0.001). In addition, CBFv was higher with 0–60 mmHg ICLF than 0–30 mmHg ICLF and placebo (p < 0.001). Intermittent calf compression is a promising novel intervention for the management of orthostatic intolerance, which may provide affected individuals renewed independence and improved quality of life

    Development and evaluation of a screening tool to identify people with diabetes at increased risk of medication problems relating to hypoglycaemia and medication non-adherence

    Full text link
    Abstract Aims: To develop and evaluate a screening tool to identify people with diabetes at increased risk of medication problems relating to hypoglycaemia and medication non-adherence. Methods: A retrospective audit of attendances at a diabetes outpatient clinic at a public, teaching hospital over a 16-month period was conducted. Logistic regression was undertaken to examine risk factors associated with medication problems relating to hypoglycaemia and medication non-adherence and the most predictive set of factors comprise the Diabetes Medication Risk Screening Tool. Evaluating the tool involved assessing sensitivity and specificity, positive and negative predictive values, cut-off scores, inter-rater reliability, and content validity. Results: The Diabetes Medication Risk Screening Tool comprises seven predictive factors: age, living alone, English language, mental and behavioural problems, comorbidity index score, number of medications prescribed, and number of high-risk medications prescribed. The tool has 76.5% sensitivity, 59.5% specificity, and has a 65.1% positive predictive value, and a 71.8% negative predictive value. A score of 27 or more out of 62 was associated with high-risk of a medication problem. The inter-rater reliability of the tool was high (κ = 0.79, 95% CI 0.75 - 0.84) and the content validity index was 99.4%. Conclusion: The Diabetes Medication Risk Screening Tool has good psychometric properties and can proactively identify people with diabetes at greatest risk of medication problems relating to hypoglycaemia and medication non-adherence

    XPS and XMCD study of Fe3O4/GaAs interface

    Get PDF
    Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (NPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe3O4 rather than Fe2O3. XAS and XMCD measurements indicate the presence of nsulating Fe divalent oxide phases (FeO) beneath the surface Fe-3 O-4 layer with the sample thickness above 4 mn. This FeO might act as a barrier for the spin injection into the GaAs

    Evaluating the Efficacy of an Active Compression Brace on Orthostatic Cardiovascular Responses

    Get PDF
    Orthostatic intolerance, one of the principle causes of syncope, can occur secondary to concomitant venous pooling and enhanced capillary filtration. We aimed to evaluate a prototype portable calf active compression brace (ACB) designed to improve orthostatic haemodynamic control. Fourteen healthy volunteers participated in a randomized, placebo controlled, cross-over, double-blind study. Testing consisted of head-upright tilting and walking on a treadmill conducted on two consecutive days with a pair of ACBs wrapped around both calves. The ACB was actuated on one test day, but not on the other (placebo). Wearability, comfort, and ambulatory use of the ACB were assessed using questionnaires. The average calf pressure exerted by the ACB was 46.3±2.2 mmHg and the actuation pressure was 20.7±1.7 mmHg. When considering the differences between ACB actuation and placebo during tilt after supine rest there were trends for a larger stroke volume (+5.20±2.34%, p = 0.05) and lower heart rate (-5.12±2.41%, p = 0.06) with ACB actuation, with no effect on systolic arterial pressure (+4.86±3.41%, p = 0.18). The decrease in stroke volume after ten minutes of tilting was positively correlated with the height:calf circumference (r = 0.464; p = 0.029; n = 22; both conditions combined). The increase in heart rate after ten minutes of tilting was negatively correlated with the height:calf circumference (r = -0.485; p = 0.022; n = 22; both conditions combined) and was positively correlated with the average calf circumference (r = 0.539; p = 0.009; n = 22; both conditions combined). Participants reported good ACB wearability and comfort during ambulatory use. These data verify that the ACB increased stroke volume during tilting in healthy controls. Active calf compression garments may be a viable option for the management of orthostatic intolerance

    Strategy for Expanding Nutrition Professionals’ Competency: A Pilot Case Study in Dissemination and Implementation Science Training

    Get PDF
    Dissemination and Implementation (D&I) science trainings are essential to build knowledge among a variety of current and future health professionals. The objective of this study was to pilot-test and assess implementation of a nutrition-specific D&I science training. Participants (students enrolled in nutrition and public health programs) completed pre/post surveys and exit interviews. Descriptive statistics and a qualitative thematic analysis used deductive coding; in which coding and theme development are directed by existing concepts. Initial coding was completed by one researcher and validated by an additional researcher to describe and provide examples of the categories the Kirkpatrick Model and Implementation Outcomes Framework. The evaluation of the training was positively supported through the Kirkpatrick Scale results (mean scores between 6.94 ± 1.7 (Learning) and 7.35 ± 1.9 (Reaction)) and qualitative findings (increased confidence in D&I science and positive feedback on active learning strategies (application-based learning, mentorship, and discussions). Participants (n=8) described the learning activities (case studies, discussions, projects), the structure of the course (flipped classroom, content, learning strategies), the setting (hybrid, online), and mentorship (continuous feedback on assignments) as enabling effective implementation, which reflects with positive Implementation Outcome findings (3.59 ± 1.26, appropriateness score 3.94 ± 0.85, and feasibility score of 4.09 ± 0.67). These findings support positive implementation feasibility and program evaluation. Future studies need to compare changes in knowledge, attitudes, and beliefs among current or future nutrition professionals before and after completing this training

    Polyunsaturated fatty acids inhibit k<sub>v</sub>1.4 by interacting with positively charged extracellular pore residues

    Get PDF
    Polyunsaturated fatty acids (PUFAs) modulate voltage-gated K(+) channel inactivation by an unknown site and mechanism. The effects of ω-6 and ω-3 PUFAs were investigated on the heterologously expressed K(v)1.4 channel. PUFAs inhibited wild-type K(v)1.4 during repetitive pulsing as a result of slowing of recovery from inactivation. In a mutant K(v)1.4 channel lacking N-type inactivation, PUFAs reversibly enhanced C-type inactivation (K(d), 15–43 μM). C-type inactivation was affected by extracellular H(+) and K(+) as well as PUFAs and there was an interaction among the three: the effect of PUFAs was reversed during acidosis and abolished on raising K(+). Replacement of two positively charged residues in the extracellular pore (H508 and K532) abolished the effects of the PUFAs (and extracellular H(+) and K(+)) on C-type inactivation but had no effect on the lipoelectric modulation of voltage sensor activation, suggesting two separable interaction sites/mechanisms of action of PUFAs. Charge calculations suggest that the acidic head group of the PUFAs raises the pK(a) of H508 and this reduces the K(+) occupancy of the selectivity filter, stabilizing the C-type inactivated state

    Cardiovascular Responses to Orthostasis and Their Association With Falls in Older Adults

    Get PDF
    Background Orthostatic hypotension (OH) refers to a marked decline in blood pressure when upright. OH has a high incidence and prevalence in older adults and represents a potential intrinsic risk factor for falls in these individuals. Previous studies have not included more recent definitions for blood pressure responses to orthostasis, including initial, delayed, and recovery blood pressure responses. Furthermore, there is little research examining the relationships between cerebrovascular functioning and falling risk. Therefore, we aimed to: (i) test the association between different blood pressure responses to orthostatic stress and retrospective falling history and; (ii) test the association between cerebrovascular responses to orthostatic stress and falling history. Methods We tested 59 elderly residents in long term care facilities who underwent a passive seated orthostatic stress test. Beat-to-beat blood pressure and cerebral blood flow velocity (CBFV) responses were assessed throughout testing. Risk factors for falls and falling history were collected from facility records. Cardiovascular responses to orthostasis were compared between retrospective fallers (≥1 fall in the previous year) and non-fallers. Results Retrospective fallers had larger delayed declines in systolic arterial pressure (SAP) compared to non-fallers (p&thinsp; =&thinsp;0.015). Fallers also showed poorer early (2&nbsp;min) and late (15&nbsp;min) recovery of SAP. Fallers had a greater decline in systolic CBFV. Conclusions Older adults with a positive falling history have impaired orthostatic control of blood pressure and CBFV. With better identification and understanding of orthostatic blood pressure impairments earlier intervention and management can be implemented, potentially reducing the associated risk of morbidity and mortality. Future studies should utilize the updated OH definitions using beat-to-beat technology, rather than conventional methods that may offer less accurate detection

    Mass modelling globular clusters in the Gaia era: a method comparison using mock data from an N-body simulation of M&nbsp;4

    Get PDF
    As we enter a golden age for studies of internal kinematics and dynamics of Galactic globular clusters (GCs), it is timely to assess the performance of modelling techniques in recovering the mass, mass profile, and other dynamical properties of GCs. Here, we compare different mass-modelling techniques (distribution function (DF)-based models, Jeans models, and a grid of N-body models) by applying them to mock observations from a star-by-star N-body simulation of the GC M 4 by Heggie. The mocks mimic existing and anticipated data for GCs: surface brightness or number density profiles, local stellar mass functions, line-of-sight velocities, and Hubble Space Telescope-and Gaia-like proper motions. We discuss the successes and limitations of the methods. We find that multimass DF-based models, Jeans, and N-body models provide more accurate mass profiles compared to single-mass DF-based models. We highlight complications in fitting the kinematics in the outskirts due to energetically unbound stars associated with the cluster ('potential escapers', captured neither by truncated DF models nor by N-body models of clusters in isolation), which can be avoided with DF-based models including potential escapers, or with Jeans models. We discuss ways to account for mass segregation. For example, three-component DF-based models with freedom in their mass function are a simple alternative to avoid the biases of single-mass models (which systematically underestimate the total mass, half-mass radius, and central density), while more realistic multimass DF-based models with freedom in the remnant content represent a promising avenue to infer the total mass and the mass function of remnants
    • …
    corecore