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ABSTRACT
As we enter a golden age for studies of internal kinematics and dynamics of Galactic globular
clusters (GCs), it is timely to assess the performance of modelling techniques in recovering
the mass, mass profile, and other dynamical properties of GCs. Here, we compare different
mass-modelling techniques (distribution function (DF)-based models, Jeans models, and a
grid of N-body models) by applying them to mock observations from a star-by-star N-body
simulation of the GC M 4 by Heggie. The mocks mimic existing and anticipated data for
GCs: surface brightness or number density profiles, local stellar mass functions, line-of-
sight velocities, and Hubble Space Telescope- and Gaia-like proper motions. We discuss the
successes and limitations of the methods. We find that multimass DF-based models, Jeans,
and N-body models provide more accurate mass profiles compared to single-mass DF-based
models. We highlight complications in fitting the kinematics in the outskirts due to energetically
unbound stars associated with the cluster (‘potential escapers’, captured neither by truncated
DF models nor by N-body models of clusters in isolation), which can be avoided with DF-
based models including potential escapers, or with Jeans models. We discuss ways to account
for mass segregation. For example, three-component DF-based models with freedom in their
mass function are a simple alternative to avoid the biases of single-mass models (which
systematically underestimate the total mass, half-mass radius, and central density), while
more realistic multimass DF-based models with freedom in the remnant content represent a
promising avenue to infer the total mass and the mass function of remnants.

Key words: galaxies: star clusters: general – globular clusters: general – stars: kinematics and
dynamics.

1 IN T RO D U C T I O N

Since the half-mass relaxation time of globular clusters (GCs) is
typically shorter than their age, two-body relaxation has modified
the phase-space distribution of their stars during their lifetime, re-
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sulting in an approximately Maxwellian velocity distribution and
a tendency toward kinetic energy equipartition and mass segrega-
tion. Dynamical models capturing the internal kinematics of GCs
come in two main flavours: (1) static (equilibrium) models and (2)
evolutionary models. The first category includes approaches like
Jeans modelling and distribution function (DF)-based models (see
below) as well as Schwarzschild’s orbit superposition method (e.g.
Gunn & Griffin 1979; Leonard, Richer & Fahlman 1992; van de
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Ven et al. 2006, respectively), while the second category includes
N-body, Monte Carlo, Fokker-Planck, and gas models (for reviews,
see e.g. Meylan & Heggie 1997; Portegies Zwart, McMillan &
Gieles 2010).

Being generally much faster to compute and allowing to effi-
ciently explore phase-space configurations of GCs without needing
to specify their initial conditions, equilibrium models (in partic-
ular DF-based and Jeans models) are well suited to tackle mass-
modelling problems, i.e. to infer the present-day total mass and
mass distribution within a cluster from observables such as sur-
face brightness or number density profiles (e.g. Trager, King &
Djorgovski 1995), line-of-sight (LOS) velocities (e.g. Meylan &
Mayor 1986), proper motions (PMs, e.g. van de Ven et al. 2006),
deep stellar luminosity/mass functions (e.g. Pasquali et al. 2004),
and pulsar accelerations (e.g. Phinney 1993). They can be used,
for example, to estimate mass-to-light ratios, to infer global mass
functions from local mass functions, to estimate the total mass in
faint/dark populations that cannot be directly observed (low-mass
stars, white dwarfs, neutron stars, black holes), and to measure clus-
ter distances by comparing LOS velocities and PMs. Knowledge of
the present-day mass profiles of GCs can also tell us about their
dynamical evolution since GC structure and evolution are closely
related (Hénon 1961), but note that clusters with different initial
conditions may at the present day look very similar. Finally, equi-
librium mass-modelling analyses can provide boundary conditions
and inform more detailed evolutionary models for which initial
conditions must be specified, for example to infer the initial mass
function (IMF) from the present-day mass function and correct for
preferential escape of low-mass stars, which is particularly impor-
tant for GCs with low mass and near the Galactic centre but would
also affect massive tidally filling clusters (e.g. Baumgardt & Makino
2003). With improvements in the speed of computers and the so-
phistication of codes, detailed evolutionary models have however
become a possible option on their own for mass-modelling appli-
cations of individual GCs. Simulations of GCs with up to 106 stars
are now possible through either direct N-body (Heggie 2014; Wang
et al. 2016) or Monte Carlo simulations (Giersz & Heggie 2011;
Askar et al. 2017). Star-by-star N-body simulations with a million
particles are still computationally too intensive to run a large num-
ber of models of massive GCs, but computing an extensive grid of
(scaled) models with ∼105 particles is now feasible (e.g. Baumgardt
2017).

With the amount and quality of internal kinematic data (both
LOS velocities and PMs) of Milky Way GCs steadily increasing in
recent years, and with the advent of Gaia, we are entering a golden
age for studies of the kinematics and dynamics of these systems
(e.g. Kimmig et al. 2015; Watkins et al. 2015a; Baumgardt 2017;
Baumgardt & Hilker 2018; Kamann et al. 2018; Libralato et al.
2018). Gaia Data Release 2 (DR2; Gaia Collaboration 2018a) has
provided parallaxes and PMs for more than a billion stars over an
∼2-yr baseline. These PMs have proven good enough to analyse
mean motions – i.e. bulk motions of the clusters (Gaia Collaboration
2018b; Posti & Helmi 2018; Vasiliev 2018; Watkins et al. 2018) and
their internal rotations (Bianchini et al. 2018; Milone et al. 2018) –
but are not yet good enough for studies of GC internal velocity dis-
persions, which limits the analyses of the internal kinematics that
can be done. However, future data releases will increase the PM
baseline to ∼5 yr and include a sophisticated crowding treatment
(particularly necessary in GC fields), which will enable kinematic
studies with internal PMs for nearby GCs. For more distant ob-
jects, membership information will greatly facilitate efficient target
selection for follow-up spectroscopic observations (Pancino et al.

2017), especially in the low-density outskirts where genuine cluster
members are usually the needle in a haystack due to contamination
by Milky Way stars.

Given these recent and upcoming observational advances, it is
timely to assess the successes, strengths, limitations, and biases
of various mass-modelling techniques in recovering the mass and
other structural and dynamical properties of GCs. This is particu-
larly important as these methods have not yet been confronted to
data (or even mock data) that extends out to a significant fraction of
the Jacobi radius of GCs, nor have they been systematically com-
pared with each other. The kinematics in the outskirts of GCs hide
important information about the interplay between internal cluster
dynamics, Galactic tides, and potentially a small dark matter halo,
but these outer parts have been so far poorly explored, and velocity
measurements are typically confined within central regions that rep-
resent a small fraction of the Jacobi volume (see Claydon, Gieles &
Zocchi 2017, fig. 16). An additional motivation for testing mass-
modelling methods is to examine how they perform at inferring
the mass-to-light ratio profiles and dark stellar remnant content of
GCs. With the recent detections of gravitational waves (e.g. Abbott
et al. 2016b) from merging stellar-mass black holes (BHs), there
has been a renewed interest in the dark content of GCs because
dynamical formation of BH–BH binaries in the dense cores of GCs
and subsequent mergers has been proposed as one of the formation
channels for these events (Abbott et al. 2016a; Antonini & Rasio
2016; Rodriguez, Chatterjee & Rasio 2016).

The first class of models that we consider in this work are DF-
based models, which are equilibrium models satisfying the colli-
sionless Boltzmann equation and described by a parametric form for
the phase-space distribution (mass, position, and velocity) of stars
capturing a few key physically motivated ingredients (e.g. Michie
1963; King 1966; Gunn & Griffin 1979). From the DF, the poten-
tial is obtained from solving Poisson’s equation self-consistently,
and spatial density and velocity distributions can be computed, pro-
jected on the plane of the sky, and compared to data to constrain the
free parameters of the assumed DF. Despite their relative simplic-
ity, such DF-based models have been extensively and successfully
applied to GC observations for decades. This is due to the fact that
(i) they are typically fast to compute, (ii) they do not require knowl-
edge of poorly constrained input like orbits and tidal effects that are
complex to account for, (iii) they still capture (approximately) basic
physical ingredients such as two-body relaxation effects and tidal
truncation, and (iv) they can be easily extended to include additional
ingredients such as a mass spectrum (Da Costa & Freeman 1976;
Gunn & Griffin 1979) or anisotropy in the distribution of velocities
(Michie 1963). Here we consider more specifically several flavours
DF-based models from the LIMEPY1 family (Gieles & Zocchi 2015)
and from the Spherical Potential Escapers Stitched models family
(SPES; Claydon et al. 2018), as well as multimass Michie–King
models (Michie 1963; King 1966; Gunn & Griffin 1979).

The second class of models that we consider here are Jeans mod-
els, which also provide a static description of the cluster and are
based on solving the Jeans equations to derive the global mass pro-
file from the density and velocity dispersion profiles of a tracer
population. These models can include both anisotropy and rotation
(e.g. Cappellari 2008), and allow for radially varying mass-to-light
ratios, which encompass underlying differences in the spatial dis-
tributions of different mass populations, although they do not (yet)

1The LIMEPY (Lowered Isothermal Model Explorer in PYthon) code is avail-
able from https://github.com/mgieles/limepy.
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include an explicit mass function. They are typically fast to run and
have proved to be useful tools for understanding a variety of stellar
systems including the Milky Way disc (Büdenbender, van de Ven &
Watkins 2015), GCs (Watkins et al. 2013), dwarf galaxies (Zhu et al.
2016a), and giant elliptical galaxies (Zhu et al. 2016b). They are also
commonly used to provide initial insights for more sophisticated,
albeit slower, alternatives such as Schwarzschild models. They have
the advantage that no functional form needs to be assumed for the
underlying DF, leaving significant freedom in determining the mass,
anisotropy, and rotation profiles. This freedom however comes at
the cost that such a method can lead to unphysical and/or unsta-
ble results, especially when the data are noisy (see Section 5 and
references therein).

The third class of models that we consider are N-body models,
specifically a mass-modelling approach based on comparing a grid
of N-body models to kinematic, structural, and stellar mass function
data as recently applied to real data of Milky Way GCs (Baumgardt
2017; Baumgardt & Sollima 2017; Baumgardt & Hilker 2018).
While these are not as flexible as the equilibrium models intro-
duced above, they have the advantage of being self-consistent, of
including the effects of collisional dynamics from first principles
and of offering a way to constrain the initial conditions of GCs.

We apply these different mass-modelling techniques to realistic
mock data from a star-by-star N-body simulation of the GC M 4
by Heggie (2014) and compare their performance using a number
of metrics. We include PMs in the mock data similar to those that
would be provided by the Hubble Space Telescope (HST) in the
central regions of GCs and, most importantly, the expected (end-
of-mission) performance of the data from Gaia in the outskirts (out
to twice the Jacobi radius). We restrict ourselves to non-rotating
models and do not consider putative intermediate-mass black holes
(IMBH) since the mock data that we use refer to a cluster with no
significant rotation and no IMBH. That said, extending this kind of
work to consider these additional ingredients in the future would be
a worthwhile exercise.

We describe the mock data2 in Section 2 and then present the
different methods (labelled as models A–H) and modelling results
in the following sections: single-mass models without and with
potential escapers (Section 3), multimass models (Section 4), Jeans
models (Section 5), and a grid of N-body models (Section 6). A
comparison of the enclosed mass and mass-to-light ratio profiles
from the various methods is presented in Section 7, a discussion
of their pros and cons can be found in Section 8, and concluding
remarks summarizing our results are presented in Section 9.

2 MO C K DATA

Our mock data are extracted from a snapshot of the star-by-star N-
body model of the GC M 4 by Heggie (2014), which included a full
mass spectrum, primordial binaries, the effects of stellar evolution,
and the tidal field of a point-mass galaxy. Data for all particles (mass,
3D position, 3D velocity, stellar type, stellar radius, luminosity, V
-band magnitude, B − V colour) are available at more than 300
instants throughout the lifetime of the cluster.3

2Data are available to download on the Gaia Challenge workshops wiki:
http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php?id = tests:collision: mo
ck data:challenge 4.
3The raw snapshots are available here: https://datashare.is.ed.ac.uk/handle
/10283/618

We selected the snapshot at t = 12 023.9 Myr (comparable to
the current age of GCs), at which point the cluster is dynamically
evolved and has lost ∼80 per cent of its initial mass due to stellar
mass loss and dynamical evolution. The main cluster properties for
the selected snapshot are total cluster mass M = 69144.5 M�, total
V-band luminosity LV = 35547 LV, �, mass-to-light ratio ϒV =
1.95 M�/LV, �, and half-mass radius rh = 3.14 pc. The Jacobi
radius (rJ) of the model at the selected time is 20.3 pc. The distance to
the real M 4 is D = 1862.1 pc (Braga et al. 2015), which corresponds
to a distance modulus of 11.35 mag. We adopt this distance here to
transform projected positions into angular distances and transverse
velocities into PMs, and conversely it is this distance we will seek
to recover from our modelling when LOS velocities and PMs are
used. In the N-body model the Galactic centre is along the x-axis
and the orbit is in the xy-plane. We assume the observer views the
cluster along the z-axis, which is not the best representation of the
way we view the real M 4. Because the tidal potential is triaxial
at large distances from the GC centre, certain properties of the
mock data depend on the viewing angle. However, we compared
the dispersion profiles at large radii for different viewing angles and
found that they are similar.

From the N-body model snapshot we extract photometric and
kinematic information that generally is (or will be) available to
observers: surface brightness and number density profiles, LOS
velocities, HST-like PMs, and Gaia-like PMs. In each case, we
mimic as closely as possible the size, quality, and spatial distribution
of real observations, as we describe below.

Different mass-modelling methods use either the number density
profile or the surface brightness profile as the main observational
constraint on the structural properties of a GC, so we construct both
from the mock data. We build a projected number density profile
for all the stars brighter than an apparent magnitude of V = 17 (at
the adopted distance of M 4). We also extract a V -band surface
brightness profile from the positions and apparent V magnitudes of
all the stars in the snapshot (with no magnitude cut).

We assume that LOS velocities are available for the subset of
red giant branch stars brighter than V = 15 (the main sequence
turn-off is around V = 16.5, corresponding to a turnoff mass of
∼0.85 M�), for a total of N = 635 stars. An uncertainty of 1 kms−1

is assumed on the LOS velocities of all these stars. This mimics the
type of measurements available or achievable with spectrographs
on ground-based telescopes. For methods that fit on the dispersion
profile (as opposed to discrete velocities), we build an LOS velocity
dispersion profile with 70 stars per radial bin (and any additional
leftover stars included in the last bin).

We extract two PM catalogues, the first designed to mimic the
kind of kinematic data enabled by HST (e.g. Bellini et al. 2014).
We restrict this sample to stars in the inner 100 arcsec of the cluster
centre in projection [comparable to the field of view of the Advanced
Camera for Surveys (ACS) on-board HST] and magnitudes in the
range 16 < V < 17.5, for a total of 2567 stars with a mean mass of
0.76 M�. We assume a typical uncertainty of 0.1 mas yr−1 on the
PM of all these stars. We build PM dispersion profiles for the radial
and tangential components in the plane of the sky with 120 stars
per radial bin (and any additional leftover stars included in the last
bin).

The second PM catalogue is obtained by using the method by
Pancino et al. (2017) to transform the N-body model snapshot into
Gaia-like observables and extract internal PMs for cluster mem-
bers that would be recovered by Gaia. The simulated cluster was
projected, at the adopted distance of M 4, on a 2◦ × 2◦ field pop-
ulation simulated with the Galaxy models by Robin et al. (2003)
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and representing the actual position of M 4 (α = 245.89675◦, δ =
− 26.52575◦, with a field population of approximately 100 000 stars
per square degree).

We adopted the bulk proper motion for M 4 from Bedin et al.
(2003). The simulations were complemented with Gaia-integrated
magnitudes using the prescriptions by Jordi et al. (2010). Errors
were simulated using the post-launch Gaia science performances
(Gaia Collaboration 2016), worsened by an appropriate amount to
take into account stellar crowding effects, based on the current de-
blending pipeline simulations and assuming end-of-mission (i.e.
5 yr nominal duration) performances, as described in detail by
Pancino et al. (2017). From these simulated Gaia end-of-mission
data, we retain only recovered cluster members that are not signif-
icantly affected by blending or contamination (we assume perfect
membership selection due to the very different proper motion of
the cluster and background). Specifically, we discard classic blends
(stars closer than Gaia’s point spread function – PSF – of 0.177
arcsec) that will not always be deblended by Gaia and we also
discard binaries. With real Gaia data, these contaminants could be
identified from the various quality flags and binary modeling pro-
vided with the final Gaia catalogue. We also discard Gaia blends
and contaminants (for definitions, see Pancino et al. 2017) blended
or contaminated by at least 1 per cent of their flux. We finally only
retain stars above 0.7 M� (V � 17) since fainter lower-mass stars
are not expected to have precise enough Gaia PMs for the pur-
pose of this study. These stars have a mean mass of 0.8 M�. From
this final sample we build PM dispersion profiles for the radial and
tangential components in the plane of the sky with 400 stars per
radial bin (and any additional leftover stars included in the last
bin).

Note that, in order to test the effects of the background on the
membership selection, we also considered other field populations,
namely a nearly empty halo field at α = 186.5◦ and δ = 36.0◦,
containing approximately 1000 stars per square degree, as well as
an extremely crowded bulge field at α = 264.5◦ and δ = −22◦,
containing approximately 1 million stars per square degree. We
found that the number of selected members with no or limited
contamination depends only weakly on the adopted field population,
unlike in Pancino et al. (2017), because M 4 is closer – thus more
spread out on the sky – and the simulated field populations are also
less crowded than the cases considered by Pancino et al. (2017).
Thus, in the remainder of this work we present results based on the
mock Gaia data with the M 4 background (7083 ‘clean’ recovered
member stars with Gaia PMs). One should however bear in mind
that this should be seen as a best-case scenario and we caution that
field contamination would be more critical for more distant/crowded
clusters in real data.

Finally, we also extract a mock local stellar mass function of
main-sequence stars as an additional constraint for methods that
aim to infer the global stellar mass function of the cluster. This
mock stellar mass function is built for stars between about 0.2 and
0.75 M� (mimicking the depth typically achieved by HST observa-
tions of nearby GCs; e.g. Sollima & Baumgardt 2017) in an annular
region between 250 and 350 arcsec in projection from the cluster
centre (around the half-mass radius). Actual measurements of the
stellar luminosity function (and thus mass function) are limited to
a restricted portion of GCs, usually close to the cluster core (e.g.
Sarajedini et al. 2007; Sollima & Baumgardt 2017) or sometimes
near the half-mass radius (e.g. Paresce & De Marchi 2000). For the
location of the reference region of our mock local stellar mass func-
tion, we chose a field close to the half-mass radius, as is often done
because there the local mass function most resembles the global

mass function (Pryor, Smith & McClure 1986; Vesperini & Heggie
1997; Baumgardt & Makino 2003).4

We compare the performance of the different mass-modelling
methods applied to the mock data in three cases:

(1) fits to the surface brightness profile (or number density pro-
file) and LOS velocities (mimicking widely available ground-based
data);

(2) fits to the data from step 1 and additionally including HST-like
PMs (currently available for a subset of ∼20 Milky Way GCs);

(3) fits to all the above and additionally Gaia-like internal PMs
(available in the near future for nearby GCs).

We fix the distance to its known value in step 1, but we leave it
as a free parameter when PMs are used. Distance determination via
dynamical modelling indeed requires both PMs and LOS velocities
(e.g. Watkins et al. 2015b) and is not possible with LOS velocities
only. It is usual for studies of real clusters with only LOS velocities
available to fix the distance to the value estimated via an alternative
method. Note that Gaia end-of-mission data will allow to secure
distances to better than 1 per cent for the majority of Milky Way
GCs (Pancino et al. 2017).

By fitting these data, we compare how well the different methods
recover the following quantities and observables: total cluster mass,
half-mass radius, global mass-to-light ratio, mass-to-light ratio pro-
file, global stellar mass function, and mass in dark remnants (when
applicable). We also assess the general quality of the fit to the LOS
velocity and PM dispersion profiles, surface brightness, or number
density profile. In the next sections, we summarize each method
in turn and we present its results and performance when fitting the
three subsets of mock data introduced above.

3 SI NGLE-MASS MODELS

3.1 Single-mass LIMEPY DF

We first consider the family of LIMEPY dynamical models, defined
from a lowered-isothermal DF as described in Gieles & Zocchi
(2015). In the single-mass variant of the LIMEPY models, stars of
different masses are implicitly assumed to have the same dynamics.
This implies that the mass-to-light ratio of the cluster is assumed to
be independent of the distance from the centre and that the effect of
mass segregation is ignored.

To compute a model in the LIMEPY family, it is necessary to
specify the values of three parameters. The concentration parameter
W0 represents the central dimensionless potential, and is used as a
boundary condition to solve the Poisson equation. The truncation
parameter g sets the sharpness of the truncation: models with larger
values of g are more extended and have a less abrupt truncation.
For g = 1 the well-known King (1966) models are recovered. The
anisotropy radius ra sets the amount of velocity anisotropy in the
system: models with a small ra are more radially anisotropic, and
when ra is large with respect to the truncation radius (rt), the velocity
distribution is everywhere isotropic. Moreover, to match a particular
cluster, the models need to be scaled, by using the value of the
desired total mass, M, and half-mass radius, rh.

We compute the projected mass density profile and the projected
velocity dispersion components (along the LOS and on the plane of

4The effect on the inferred global mass function of a non-optimal location
of the measured luminosity function has been explored by Sollima et al.
(2015) by comparing multimass Michie-King models to mock data.
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the sky) for the models, and we compare them with the mock binned
profiles described in Section 2 to determine the best-fitting parame-
ters. The fitting procedure we follow is similar to the one presented
by Zocchi, Gieles & Hénault-Brunet (2017) in their section 4.2. We
adopt a log-likelihood function of the form

∑n

i=1(Oi − Mi)2/E2
i ,

where n is the number of bins, Oi are the mock data values, Ei

are the errors on the data, and Mi are the model values at the
same radial position as the data. The fitting parameters we consider
are the three model parameters W0, g, ra, the two scales M and
rh, and the mass-to-light ratio ϒV = M/LV needed to convert the
model projected mass density profile to a surface brightness pro-
file for comparison with the observations. A nuisance parameter is
included as a fitting parameter to capture the unknown uncertainty
in the surface brightness profile values (e.g. due to stochastic sam-
pling of the stellar luminosity function). For the surface brightness
data points, the log-likelihood function above thus takes the form∑n

i=1(Oi − Mi)2/σ 2
μ, where σ 2

μ is now a fitting parameter. The fits
are performed by using EMCEE (Foreman-Mackey et al. 2013) and
adopting uniform priors on all parameters apart from ra for which
the prior is uniform in log (ra).

Fig. 1 shows the best-fitting models together with the profiles
from the snapshot of the M 4 simulation for the three combina-
tions of mock data considered. The figure shows that the best-fitting
models for the three cases similarly reproduce the surface bright-
ness profile, but some differences are found when comparing their
kinematic profiles. When considering the models that include the
PM data and the distance as a fitting parameter, we see that the cen-
tral part of the PM dispersion profiles are very similar, while some
differences are seen beyond the extent of the HST-like sample: only
when including the Gaia-like PM data do the best-fitting single-
mass models satisfyingly reproduce the PM dispersion profiles at
large radii.

The best-fitting values and ±1σ uncertainties on the parameters
of the LIMEPY single-mass models (obtained from their marginalized
posterior probability distributions) are listed in Table 1. We present
the value of the anisotropy radius in relation to the truncation radius
to make it clear that the anisotropy radius obtained is very large,
and the models are therefore isotropic. In Table 2 we present the
best-fitting values obtained for the mass, half-mass radius, mass-to-
light ratio, and distance of the cluster for the three cases considered.
PM data sampling the entire extent of the cluster clearly improves
the performance of single-mass models. Only when considering all
the PM data it is possible to accurately recover the true value of the
mass and a value of the half-mass radius that is consistent with the
real one within 2σ .

It is important to point out that when considering Gaia-like data
in this subsection, we did not include the outermost point of each of
the PM dispersion profiles in the fit, where these profiles flatten in
a way that cannot be reproduced by truncated models. We did this
because, due to their small associated errors, these points would
drive the fit towards models with an unrealistically large mass and
half-mass radius, with the resulting best-fitting surface brightness
profile heavily underestimating the mock data in the centre and
overestimating it in the outer parts, with a very large discrepancy.
This illustrates a limitation of these models in the outskirts of stel-
lar clusters significantly affected by Galactic tides, which can be
overcome with the SPES models described in Section 3.2.

3.2 Single-mass SPES DF (with potential escapers)

We can also consider single-mass models that include the effects
of energetically unbound stars, such as the SPES models (Claydon

Figure 1. Fit of the single-mass LIMEPY models from Section 3.1 to the data
sets of cases 1, 2, and 3. From top to bottom: surface brightness profile, LOS
velocity dispersion profile, and radial and tangential PM dispersion profiles.
In each panel, the black solid line represents the result of the fit carried out
only on the surface brightness profile and LOS velocity dispersion (case
1), the dashed red line the fit when also using HST PMs (case 2), and the
green line the profile obtained when fitting also on Gaia-like PMs (case
3). The 1σ and 2σ contours for the model obtained when fitting on all
the data are indicated as dark and light green-shaded areas. The mock data
are represented by blue-filled circles, with the exception of Gaia-like PMs
shown with red-filled circles. The most distant Gaia PM data point at ∼3000
arcsec was not included in the fit.
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Table 1. Results of LIMEPY single-mass model fits to different data set
combinations. The fitting parameters M, rh, ϒV, and D are given in Table 2.

Data W0 g ra/rt

(1) Only LOS 8.70+0.17
−0.16 0.93+0.07

−0.08 12.30+45.24
−10.78

(2) No Gaia 8.70+0.17
−0.16 0.94+0.07

−0.08 7.64+36.71
−6.28

(3) All 9.18+0.18
−0.21 0.56+0.08

−0.07 14.01+43.15
−10.90

et al. 2018). It has been shown that due to the interplay of the in-
ternal cluster potential and the Galactic tidal potential, there is a
geometric condition for escape (Fukushige & Heggie 2000; Baum-
gardt 2001), which causes stars with energies above the escape
energy to remain associated with the cluster. These stars are known
as potential escapers (hereafter PEs) and can stay trapped within
the cluster for many crossing times, which causes an elevation in
the velocity dispersion profile at large radii and an extension of the
surface brightness/density profiles (Küpper et al. 2010; Claydon
et al. 2017; Daniel, Heggie & Varri 2017). The fraction of PEs in
a cluster depends on its mass, how dynamically evolved the GC is,
its orbital properties and the properties of the host galaxy (Claydon
et al. 2017). In the context of the present study, their inclusion in a
DF-based model provides a way of dealing with the last bin of the
mock Gaia PM dispersion profiles for which the LIMEPY models do
not have a prescription.

Similarly to LIMEPY, SPES models have a parameter for the central
potential W0 and a truncation parameter B, which varies the sharp-
ness of the truncation but with a non-zero density at the critical
energy (for B > 0), allowing the unbound population to be in-
cluded continuously. SPES models are isotropic and therefore have
no anisotropy parameter, but there is a third parameter η, which sets
the width of the energy distribution of the unbound stars and there-
fore the ratio of the velocity dispersion at the edge of the model to
(approximately) the dispersion in the centre. We also fit on a mass
scale M and a radial scale. Because the model can be solved beyond
rt, we use rt as the radial scale and as a fitting parameter and solve
the model until the last data point, which for this N-body snapshot
corresponds to 2rJ.

We project the model in the same way as detailed in Gieles &
Zocchi (2015), and when fitting on the surface brightness profile
we also fit on the mass-to-light ratio ϒV = M/LV and a nuisance
parameter that captures the uncertainty in the surface brightness
σμ. The fitting procedure is performed using the binned data and
using EMCEE (Foreman-Mackey et al. 2013), and uniform priors are
adopted for all parameters.

Results for the best-fitting model parameters and the properties
of the PEs are given in Table 3, including rt and the inferred fraction
of mass in PEs, fPE. The fact that the recovered fPE is about half the
true value is most likely a systematic problem in the model rather
than an observational bias: fPE is also a factor 2 or 3 too low when
the model is compared to N-body data without observational uncer-
tainties (Claydon et al. 2018). This is likely due to the assumption
of spherical symmetry and the absence of a detailed treatment of the
Galactic tidal potential in the model (Claydon et al. 2018). Table 2
shows the best-fitting values of M, rh, ϒV, and D (when applicable)
for the three different data set combinations considered. Fig. 2 shows
the best-fitting model compared to the mock data profiles for case
3. The recovered values for M and rh for the different data sets are
similar to the results of the single-mass LIMEPY models discussed in
Section 3.1. The accuracy of the inferred cluster mass M improves
when adding PMs, and the best-fitting value is consistent with the

true one within 1σ only when including Gaia PMs. The recovered
value of rh is also improved when adding PMs, but it is still under-
estimated, even with Gaia PMs, which is probably a systematic bias
as a result of the fact that mass segregation is not included in the
SPES models. The ϒV and D are better fitted when including Gaia
PMs as opposed to just HST, but ϒV is underestimated and D is
overestimated by 2σ (case 2) or 1σ (case 3). These deviations from
the real values may be due to a fundamental limitation of isotropic,
single-mass models.

Note that if we were to fix rt = rJ the model would struggle
to simultaneously fit the low density and flat velocity dispersion
near rJ, whereas with the smaller rt � 0.6rJ value reached by the
best-fitting model a low density can be obtained while keeping the
velocity dispersion profile flat in the outer regions. This may be
further improved with a multimass version of this model, in which
the giant stars would have a higher central density (relative to the
density at rt) and a lower central velocity dispersion (relative to
the dispersion at rt) because of mass segregation. That said, the
model tested in this section remains the only DF-based model able
to successfully match the outermost Gaia data. However, an equally
good representation of the kinematics in the cluster outskirts is also
provided by Jeans models (see Section 5.2).

4 MULTI MASS MODELS

4.1 3-component LIMEPY DF

In this section, we explore simple DF-based three-component mod-
els. The DF is that of an isotropic, lowered isothermal model, as
implemented in LIMEPY (Gieles & Zocchi 2015), and we approxi-
mate the cluster by three components: (1) (dark) low-mass stars; (2)
(visible) stars; and (3) (dark) remnants. The j-th component (with j
= 1, 2, or 3) is specified by a mean mass mj and a total mass Mj. The
masses mj are internally expressed in units of the global mean mass
of the cluster5 and Mj is internally converted to a normalized mass
fraction. The velocity scale of each component sj relates to mj as
sj ∝ m

−1/2
j to include the effect of (partial) equipartition (for details,

see Da Costa & Freeman 1976; Gieles & Zocchi 2015). Although
more mass components are required to accurately describe the mass
function of GCs, the general dynamical behaviour of a mass seg-
regated cluster should be captured by a simple three-component
model. In these models, there are five free parameters associated
with the mass function, the three mj values, and any two of the Mj

values. (Note that without the total mass M as a fitting parameter,
there are six parameters needed to fully specify the mass function).
We exclude the most distant data point of the binned Gaia mock
velocity dispersion profile from the fit, because we encountered
a similar issue as with the single-mass models discussed in Sec-
tion 3.1. Although this issue is not as severe as for the single-mass
models, we found that including this outermost data point led to
best-fitting models that significantly overestimate the radial extent
of the cluster and provide a poor fit to the outer surface brightness
profile. As in Section 3, the fitting procedure is performed using the
binned data and using the EMCEE MCMC code (Foreman-Mackey
et al. 2013), with a nuisance parameter σμ for the unknown uncer-
tainty in the surface brightness values, and adopting uniform priors
for all parameters.

5The way the mean mass is defined affects some of the model parameters.
See the discussion in Section 2 of Peuten et al. (2017).
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1406 V. Hénault-Brunet et al.

Table 2. Recovered quantities for different mass-modelling methods and combinations of mock data sets. For the ‘Case’ column: 1 = surface brightness
profile (or number density) + LOS velocities; 2 = surface brightness profile (or number density) + LOS velocities + HST PMs; 3 = surface brightness
profile (or number density) + LOS velocities + HST PMs + Gaia PMs. The local stellar mass function around the half-mass radius was used as an additional
observational constraint when the data set is marked by ∗.

Recovered quantities

Modelling method Case M [M�] rh [pc]
ϒV

[M�/LV, �] Mdark/M D [kpc]

True values → 69 144.5 3.14 1.95 0.393 1.862

A Single-mass LIMEPY DF 1 57 424+3679
−3509 2.16+0.12

−0.11 1.63+0.12
−0.11 ... 1.862 (fixed)

(Section 3.1) 2 62 618+5795
−5298 2.35+0.15

−0.14 1.50+0.08
−0.07 ... 2.028+0.063

−0.061

3 68 998+7911
−6073 2.93+0.18

−0.15 1.71+0.11
−0.09 ... 1.925+0.063

−0.066

B Single-mass SPES DF (with PEs) 1 57 707+3918
−3687 2.26+0.13

−0.10 1.63+0.13
−0.12 ... 1.862 (fixed)

(Section 3.2) 2 62 240+5461
−5856 2.42+0.16

−0.15 1.53+0.08
−0.07 ... 2.007+0.062

−0.069

3 66 444+6223
−5945 2.80+0.16

−0.16 1.62+0.10
−0.09 ... 1.917+0.057

−0.058

C 3-component LIMEPY DF 1 84 215+10230
−9645 3.35+0.35

−0.35 2.36+0.31
−0.28 0.26+0.09

−0.07 1.862 (fixed)

(Section 4.1) 2 77 583+7833
−7789 3.06+0.21

−0.21 2.02+0.23
−0.20 0.32+0.10

−0.08 1.927+0.066
−0.070

3 78 336+6865
−6535 3.12+0.14

−0.13 2.08+0.12
−0.10 0.31+0.08

−0.06 1.906+0.055
−0.053

D Multimass LIMEPY DF 1∗ 79 195+7318
−6665 3.05+0.35

−0.34 2.27+0.35
−0.29 0.46+0.05

−0.07 1.862 (fixed)

(Section 4.2) 2∗ 75 662+7625
−6706 2.79+0.25

−0.23 2.09+0.30
−0.24 0.42+0.07

−0.07 1.904+0.070
−0.065

3∗ 75 643+6721
−6193 2.78+0.14

−0.13 2.08+0.23
−0.20 0.44+0.05

−0.06 1.904+0.053
−0.054

E Multimass King DF 1∗ 70 560 ± 5013 2.87 ± 0.12 1.97 ± 0.14 0.36 ± 0.01 1.862 (fixed)
(Section 4.3) 2∗ 70 560 ± 3305 2.87 ± 0.12 1.97 ± 0.10 0.36 ± 0.01 1.861 ± 0.056

3∗ 68 890 ± 3130 2.87 ± 0.12 1.92 ± 0.10 0.35 ± 0.01 1.861 ± 0.056

F Variable M/L Jeans (Sollima) 1 83 345 ±
23850

3.71 ± 2.55 2.32 ± 0.66 ... 1.862 (fixed)

(Section 5.1) 2 58 757 ±
17417

2.33 ± 1.37 1.66 ± 0.49 ... 1.861 ± 0.056

3 65 991 ±
13676

2.59 ± 0.71 1.84 ± 0.38 ... 1.861 ± 0.056

G Variable M/L Jeans (JAM) 1 64 269+15635
−12389 2.31+1.17

−0.60 1.88+0.46
−0.35 ... 1.862 (fixed)

(Section 5.2) 2 65 924+16438
−12218 2.37+1.05

−0.47 1.89+0.50
−0.36 ... 1.878+0.090

−0.081

3 71 856+8119
−7815 2.97+0.48

−0.36 2.08+0.15
−0.15 ... 1.869+0.059

−0.056

H N-body grid 1∗ 68 159 ± 3820 2.72 ± 0.18 1.91 ± 0.11 0.36 ± 0.05 1.862 (fixed)
(Section 6) 2∗ 70 000 ± 1300 2.84 ± 0.11 1.82 ± 0.03 0.38 ± 0.05 1.935 ± 0.055

3∗ 70 540 ± 1020 2.82 ± 0.11 1.87 ± 0.03 0.37 ± 0.05 1.914 ± 0.055

Table 3. Results of the SPES models (with PEs) fitted to different data set combinations. The values in the last two
columns should be compared to rJ,true = 20.3 pc and fPE, true = 0.08. The fitting parameters M, rh, ϒV, and D are given
in Table 2.

Data W0 B η rt [pc] fPE

(1) Only LOS 9.32+0.39
−0.36 0.75+0.09

−0.15 0.339+0.035
−0.035 13.8+4.87

−3.05 0.040+0.100
−0.008

(2) No Gaia 9.17+0.28
−0.26 0.80+0.07

−0.08 0.321+0.028
−0.036 13.0+1.62

−1.42 0.037+0.011
−0.100

(3) All 10.18+0.37
−0.31 0.52+0.12

−0.15 0.370+0.019
−0.019 12.2+0.8

−0.6 0.043+0.007
−0.070

4.1.1 Model A from Gunn & Griffin (1979)

As a first attempt, we use model A from Gunn & Griffin (1979).
Informed by a stellar IMF, they propose a three-component model
of the form mj = [0.5, 1, 1.5] and Mj = [5, 1, 0.1]. With the mass

function fully defined, and using King (1966) models (i.e. g = 1 in
LIMEPY), the model has one free parameter, namely the dimension-
less central potential W0. In addition to W0, we fit on two physical
scales (the total mass M and the half-mass radius rh) and on the dis-
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Mass modelling globular clusters in the Gaia era 1407

Figure 2. Fit of the model with PEs (Section 3.2) to the data set of case
3 (fitting to surface brightness, radial velocities, HST, and Gaia-like PMs).
The mock data for the surface brightness profile (top panel), LOS velocity
dispersion profile (middle panel), and PM dispersion profile (bottom panel),
are shown with blue-filled circles, except the Gaia mock data shown in red.
The green curve is the 50th percentile of the best-fitting model with PEs
and the shaded dark green region shows the 1σ contours and the light green
region shows the 2σ contours. The dashed black line is the rJ and the dashed
green line is rt.

tance D. We fit the surface density of the second mass component
to the surface brightness profile, where we use the mass-to-light
ratio ϒV = M/LV as an additional fitting parameter, and a nuisance
parameters σμ for the uncertainty in the surface brightness pro-
file, bringing the total of fitting parameters to 6. We use the LOS
velocities, HST-like, and Gaia-like PMs. The resulting physical
scales are M � (8.6 ± 0.7) × 104 M� (and ϒV � 2.3 ± 0.3) and
rh � 2.9 ± 0.1 pc. Hence, despite giving precise results (approxi-
mately 8 per cent error in M), M is systematically overestimated
(∼2.5σ ). We also find that the surface brightness profile is not well
described by this model, reflected by a large σμ = 0.8 mag. This is
likely because the mass function is not a good representation of the
real mass function of this particular cluster. By having only a small
amount of mass in the dark remnants, the visible stars in the model
are too much segregated to the centre with respect to low-mass stars,
leading to an inflated total mass and radius. Comparing these results
to the single-mass model fits of the previous section, we see that
using the wrong mass function can give systematic biases of simi-
lar magnitude to those found with the single-component models. A
multicomponent model is therefore not necessarily a better model.

4.1.2 Three-component model with two mass function parameters

In this section we consider a three-component model with freedom
to adjust the mass function, guided by the data. We fix m1 = 0.3

Figure 3. Fit of the three-component model from Section 4.1 to the data
set of case 3 (fitting to surface brightness, LOS velocities, HST, and Gaia-
like PMs). The mock data for the surface brightness profile (top panel),
LOS velocity dispersion profile (middle panel), and PM dispersion profile
(bottom panel) are shown with blue-filled circles, except the Gaia mock data
shown in red. The most distant Gaia PM data point at ∼3000 arcsec was
not included in the fit. Median values at each R are shown with green lines,
and the 1σ and 2σ contours are shown with dark and light green-shaded
regions, respectively.

(low-mass stars) and m2 = 0.8 (visible stars), appropriate values for
an old GC, and we assume that the visible stars are tracers in the
potential, and set their mass fraction to 1 per cent (i.e. f2 = M2/M =
0.01), which is a reasonable assumption because the tracer stars
dominating the light (evolved stars and upper main sequence stars)
indeed make a negligible fraction of the total cluster mass. The
motivation to treat them as tracers is also to reduce the number of
model parameters. This model has two remaining free parameters
with which the mass function is fully defined: the mass of the rem-
nants (i.e. m3) and the mass fraction in the remnants (f3). Apart from
W0, we also leave the truncation parameter g as a free parameter
and again fit on ϒV by comparing the projected mass density profile
of the second component to the surface brightness profile.

The results of this model fitted to the full data set (case 3) are
shown in Fig. 3 (the results are very similar for cases 1 and 2, so we
do not show them here). Despite its relative simplicity, the model
does a good job at describing the various mock profiles. The true M
and rh are retrieved within 1σ (see Table 2) when PMs are included.
When using only LOS kinematics, the median M is 1.5σ away from
the true mass of the cluster.

Results for model shape parameters and the properties of the
third (dark remnant) component are given in Table 4. From this we
see that in the best-fitting model, about 30 per cent of the mass is
in the dark remnant component, which have a mass slightly higher
(∼0.9 M�) than that of visible stars (0.8 M�). The mass in the third
component is lower than the mass fraction in remnants in the N-
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1408 V. Hénault-Brunet et al.

Table 4. Results of three-component model fits to different data set com-
binations. The fitting parameters M, rh, ϒV, and D are given in Table 2.

Data W0 g m3 f3

(1) Only LOS 4.95+0.22
−0.19 1.20+0.17

−0.17 0.92+0.05
−0.04 0.26+0.12

−0.09

(2) No Gaia 4.88+0.24
−0.23 1.32+0.16

−0.15 0.94+0.05
−0.04 0.32+0.10

−0.08

(3) All 4.85+0.31
−0.20 1.29+0.16

−0.17 0.94+0.05
−0.05 0.31+0.08

−0.06

body snapshot (∼39 per cent), which is probably due to the fact that
m3 is higher than the typical remnant mass (0.67 M�; dominated by
white dwarfs).

A smaller value of W0 is obtained for the three-component model
compared, for example, to single-mass models of Section 3 and
the multimass models of Section 4.2. As we noted above, the
global mean mass is chosen as a reference mass to compute the
LIMEPY models. W0 represents the value of the dimensionless cen-
tral potential for the mean mass group. The mean mass in the three-
component model is ∼0.38 M�, smaller than in the N-body snapshot
and multimass models of Section 4.2, where it is 0.5 M�. Since
lower-mass stars are less centrally concentrated, a smaller value
of W0 for the three-component model is thus expected. We note
that the W0 of the second component (i.e. the visible stars) is ∼10
for these models, very similar to the single-mass models, again as
expected.

4.2 Multimass LIMEPY DF

In this subsection and the following, we consider multicomponent
lowered isothermal models, as introduced in Section 4.1, but now
including many more mass components to accurately describe the
stellar mass function within GCs. In this case, we use as an ad-
ditional observational constraint the mock stellar mass function of
main sequence stars around the half-mass radius of the cluster (see
Section 2). We want to determine whether these models can provide
an improvement over simpler three-component models, and also to
what extent they can recover information about the dark mass (low-
mass stars and dark remnants) even if the kinematic and structural
observational constraints are dominated by the bright visible stars.
We examine two different approaches: the first one relies on the
multicomponent models implemented in LIMEPY (Gieles & Zocchi
2015) assuming power-law functional forms for the mass functions
of visible stars and remnants, while the second approach in the next
subsection uses the Gunn & Griffin (1979) multimass DF, a flexible
mass function for the visible component but a fixed prescription for
the mass function of remnants (as used, for example, by Sollima,
Bellazzini & Lee 2012).

Here we consider more realistic LIMEPY models including more
numerous mass bins. In addition to the five free parameters speci-
fying the structural properties, anisotropy, and scales of the cluster
(W0, g, ra, M, rh, defined as in previous sections), we adopt addi-
tional free parameters associated with the mass function. The mass
function of visible stars is defined by a power law (dN/dm ∝ m−α)
with index α = α1 for stars with m < 0.5 M� and index α = α2

for stars with m > 0.5 M�, with the second power law truncated at
the turn-off mass (0.85 M�). The mass function of dark remnants
is specified by a power law with index α = αrem spanning the mass
range between the mass of the lowest-mass white dwarf and the
mass of the most massive black hole predicted by the single-star
evolution (SSE) package (Hurley, Pols & Tout 2000) at the age and
metallicity of the cluster (∼12 Gyr, [Fe/H]∼− 1), corresponding

to a range of 0.52–20.85 M� for an IMF extending to 100 M�.
Combined with the total cluster mass M, the four additional free
parameters (power-law exponents α1, α2, αrem, and the fraction of
mass in dark remnants Mdark/M) fully define the mass function, thus
specifying all values of mj and Mj needed to build the multimass
model. We considered 10 linearly spaced mass bins6 for main se-
quence and evolved stars covering the range from 0.1 M� to the
main-sequence turn-off mass. For the remnants, we define the edges
of the mass bins such that we have eight remnant mass bins, three
linearly spaced bins corresponding to white dwarfs, one bin for neu-
tron stars, and four logarithmically spaced bins for black holes of
different masses. The edges of the mass bins between the different
types of stellar remnants are adopted as the masses at which SSE
predicts a transition between white dwarfs and neutron stars, and
between neutron stars and black holes. The values of Mj (total mass
in each bin) are computed according to the power law adopted for
the mass function, assuming a continuous mass spectrum. Note that
these are all related through the adopted single power-law mass
function for the remnants, so the remnant mass bins are not inde-
pendent of each other.

Part of the motivation for leaving freedom in the total mass frac-
tion and mass distribution of dark remnants is that these are not
known a priori and very uncertain, which can lead to large system-
atic uncertainties in the inferred cluster mass and mass profile (e.g.
Sollima et al. 2012). We also want to explore how, with limited as-
sumptions, the mass fraction and distribution of remnants can itself
be constrained by multimass models.

We compare the multimass models introduced in this section to
our mock data in a similar way to what was done with the models
considered previously. However, the conversion of density profiles
for different mass species to surface brightness profiles that can
be compared to observations requires some extra attention because
several mass components (with different spatial distributions) can
contribute to the observed light and we need to specify their rel-
ative mass-to-light ratios. Here we couple our multimass models
to predictions from the flexible stellar population synthesis (FSPS)
models (Conroy, Gunn & White 2009; Conroy & Gunn 2010) based
on Padova stellar isochrones (Girardi et al. 2000; Marigo & Girardi
2007; Marigo et al. 2008) to obtain the mass-to-light ratios as a
function of age, metallicity, stellar mass, and evolutionary stage,
which we would need to compare our models with real observa-
tions. We fit on the shape of the surface brightness profile only
(not its absolute values) so that the inferred total mass is controlled
by the kinematics and not influenced by systematic differences be-
tween the absolute values of the mass-to-light ratios in the FSPS
models and the N-body simulation used to generate mock data. The
global mass-to-light ratio ϒV is thus another free parameter. The
kinematic mock data are compared to the model velocity dispersion
values for tracer stars with the same mean mass as those of a given
kinematic sample.

As in previous sections, the fitting procedure is performed on
the binned data using the EMCEE MCMC code (Foreman-Mackey
et al. 2013), with a nuisance parameter for the unknown uncertainty
in the surface brightness values, and adopting uniform priors for
all parameters (uniform in log ra for the anisotropy). We found
that including the outermost data point of the Gaia PM dispersion
profiles led to similar biases as those discussed in Section 4.1 and
we thus ignored these data in the fit.

6See Peuten et al. (2017) for a discussion of the choice and minimum number
of mass bins to ensure fast but stable solutions.

MNRAS 483, 1400–1425 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/1/1400/5211100 by C
onsolidation Plus Q

U
EEN

 user on 22 April 2020



Mass modelling globular clusters in the Gaia era 1409

The results from fitting these multimass LIMEPY models to the
full data set (case 3) are shown in Fig. 4 (the results are similar
for cases 1 and 2, so we do not show the other fits). Again, the
various mock profiles are well reproduced by the models, although
the outermost data point on the Gaia PM dispersion profile cannot
be matched by these DF-based models.

The true M, ϒV, and rh are typically retrieved within 1σ−1.5σ

(see Table 2), but we notice some small systematic effects. These
models tend to slightly overestimate the total mass (and thereby
mass-to-light ratio), underestimate the half-mass radius, and over-
estimate the fraction of mass in dark remnants (although this last
recovered quantity is always consistent with the true value within
1σ ). The systematic underestimation of the half-mass radius may
be due to underestimating the mass in low-mass stars at large
radius.

Results for the model parameters, global mass function, and mass
distribution of dark remnants are given in Table 5. We note that
isotropic models are favoured (the best-fitting anisotropy radius is
much larger than the Jacobi radius of the model), as found for the
single-mass models. It is interesting to see that our simple power-
law parametrization for the mass function of dark remnants yields a
successful recovery of the fraction of the total mass in remnants and
a good approximation of their mass function, as can be seen from the
top left-hand panel of Fig. 5, where we overplot the inferred mass
function on the true mass function from the N-body snapshot. In the
bottom left-hand panel of the same figure, we show that the global
mass function of stars is also well recovered within uncertainties,
except perhaps for a slight discrepancy at the very low-mass end
(which comprises a very small fraction of the total cluster mass).
The broken power law we adopted is a good representation of the
global mass function of the cluster.

4.3 Multimass King DF

We now turn to the multimass modelling method used by Sollima
et al. (2012). In the present case, the DF is given by the sum of the
contributions of 12 different evenly spaced mass groups from 0.1 to
1.3 M� each described by a Michie–King DF (Michie 1963; King
1966):

f (E, L) =
12∑

j=1

fj =
12∑

j=1

kj exp

(
AjL

2

σ 2
Kr2

a

)
exp

(
AjE

σ 2
K

− 1

)
, (1)

where E and L are the energy and angular momentum per unit
mass, respectively, ra is the radius at which orbits start to be radially
biased, σ K is a normalization term, the coefficients Aj ∝ mj define
the degree of mass segregation, and the coefficients kj determine
the MF. We refer to Appendix A for the equations used to integrate
the DF to obtain the density (ρ j) and velocity dispersion profiles
in both the radial and tangential components (σ r, j, σ t, j) of all mass
species and projected on the plane of the sky (	, σ LOS, σ R, σ T).

The free parameters of this family of models are the central
potential W0 ≡ 
0/σ

2
K , the scale (core) radius rc ≡

√
9σ 2

K/4πGρ0,
and the coefficients kj which determine the MF (see also King 1966;
Gunn & Griffin 1979). Unlike the method described in Section 4.2,
where the global mass function is parametrized by a broken power
law, the shape of the mass function is free to vary in each of the eight
bins corresponding to visible stars, according to the values of the
coefficients kj. A population of remnants has also been simulated by
passively evolving a Kroupa (2001) IMF defined between 0.1 M�
and 8 M� using the prescriptions of Kruijssen (2009) and then

retaining a number of remnants in each bin defined by

Nremn,j = N ev
remn,j

Nmod
j

N IMF
j

(2)

where Nmod
j and N IMF

j are the number of visible stars adopted in
the j-th mass bin by the model and that predicted by the Kroupa
(2001) IMF, and N ev

remn,j is the number of remnants after passive
evolution in the same j-th mass bin. The upper limit of the adopted
IMF assumes that the entire population of remnants is constituted
by only white dwarfs. This simplification was initially motivated
by the large natal kicks expected for neutron stars and the relatively
rapid ejection of black holes expected from dynamical evolution.
We note that there is recent theoretical and indirect observational
evidence pointing to the possible retention of significant numbers
of stellar-mass black holes to the present day in GCs (e.g. Breen &
Heggie 2013; Morscher et al. 2015; Peuten et al. 2016; Arca Sedda,
Askar & Giersz 2018; Askar, Arca Sedda & Giersz 2018), but an
evolved cluster (given its present-day mass and mass function) like
M 4 modelled here is not expected to have retained a significant
population of black holes. Indeed, only two black holes are still
present in the snapshot studied, although the cluster has retained
130 neutron stars. The neutron stars make �0.3 per cent of the total
cluster mass and their mean mass is only slightly larger than that of
the most massive white dwarfs, so we do not expect that including
them would result in a noticeable improvement of the fits.

The best-fitting model has been calculated following the iterative
procedure described in Sollima et al. (2012). Briefly, a first guess
of the kj coefficients has been chosen and the values of W0 and
rc providing the best fit to the number density profile have been
searched. As a first guess, the coefficients corresponding to a Kroupa
(2001) mass function have been adopted. The local mass function
at the same projected radius as the mock observations has then been
calculated and used to adjust the kj coefficients

knew
j = kold

j

(
Nobs,j

Nmod,j

)η

(3)

where Nmod, j and Nobs, j are the predicted and observed number of
particles (remnants excluded) in the j-th mass bin, respectively, and
η is a dampening factor set to 0.5 to avoid divergence. The above
procedure is repeated until the parameters W0, rc and the coefficients
kj start to fluctuate around equilibrium values. The mass of the
model is then normalized using a maximum-likelihood technique
(see equation 11). Note that since the shape of the mass profile
(governed by the parameters W0, rc and by the mass function) is
chosen using only the density profile and the mass function near
the half-light radius, the derived half-mass radius does not depend
on the adopted set of kinematical constraints with this method.
Different values of ra have also been tested to account for different
degrees of radial anisotropy. However, the isotropic model (ra =
∞) always provided the best fit to the data, as was found with the
models of the previous sections.

Unlike what is done with LIMEPY models, where the distance
is left as a free parameter throughout the fitting procedure, in the
technique described here the distance was estimated (for cases 2 and
3) for any choice of ra/rc at the end of each iteration cycle before
normalization (the last step to derive the mass). For this purpose,
the distance providing the proportion of dispersions in the three
directions (LOS, radial and tangential; see equations 6, 7, and 8)
predicted by the considered anisotropy profile is chosen (e.g. in the
case of the best-fitting isotropic model, the distance providing the
same dispersions in all projections was chosen).
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1410 V. Hénault-Brunet et al.

Figure 4. Fit of the multimass LIMEPY model from Section 4.2 to the data set of case 3 (fitting to surface brightness, LOS velocities, HST and Gaia-like PMs,
and mass function in an annular region between 250 and 350 arcsec). The mock data for the surface brightness profile (upper left), LOS velocity dispersion
profile (upper right), PM dispersion profiles (radial component in middle left, tangential component in middle right panel), and local stellar mass function near
the half-mass radius (lower right panel) are shown with blue-filled circles, except the Gaia mock data shown in red. The 1σ and 2σ contours on the best-fitting
model are shown with dark and light green-shaded regions, respectively, and the median values are shown with green lines.

Table 5. Results of multimass LIMEPY model fits to different data set combinations, all including the mock local stellar
mass function measurement. The fitting parameters M, rh, ϒV, and D are given in Table 2. Note that when describing
the global mass function of main-sequence stars in the N-body snapshot by a broken power law, it has values of α1 =
0.19 and α2 = 1.17.

Data W0 g log(ra/pc) α1 α2 αrem

(1) Only LOS (+ MF) 7.00+1.09
−0.61 1.13+0.30

−0.32 3.63+0.95
−1.17 0.09+0.08

−0.08 1.15+0.27
−0.25 6.35+0.71

−0.54

(2) No Gaia (+ MF) 6.84+0.77
−0.53 1.43+0.25

−0.28 3.63+0.94
−1.05 0.07+0.08

−0.08 1.16+0.26
−0.27 5.90+0.50

−0.44

(3) All (+ MF) 6.91+0.75
−0.49 1.34+0.16

−0.15 3.86+0.79
−0.95 0.06+0.08

−0.08 1.12+0.26
−0.25 5.93+0.35

−0.31

The best-fitting model to the mock data from case 3 (number
density profile, LOS velocities, HST and Gaia-like PMs, with the
addition of the mass function) is shown in Fig. 6. The results are
similar for the other cases considered and thus are not shown here.
The various observables are once again well reproduced by the
models, and as in the previous sections the outermost data point in
the Gaia PM dispersion profile cannot be matched by these models.

As shown in Table 2, the true M and ϒV are recovered within
1σ in all cases, and rh is systematically slightly underestimated
(although within ∼2σ ), as was found with the other flavour of
multimass models in Section 4.2. The lower right-hand panel of
Fig. 5 shows that the global mass function of stars is well recovered
with this method. The upper right panel of that figure displays the
adopted remnant mass function overplotted on the true remnant
mass function. In the white dwarf regime, the adopted prescription

for the mass function of remnants is a good match to the prescription
used in the N-body model. The multimass models presented in
this subsection however ignore the contribution of neutron stars
and black holes, and they slightly underestimate the total mass in
remnants.

5 J E A N S M O D E L L I N G

Another mass-modelling approach is the use of the Jeans equation
to derive the global mass profile M(< r) from the density ν and
velocity dispersion σ r profiles of a tracer population:

1

ν

dνσ 2
r

dr
+ 2β

σ 2
r

r
= −GM(< r)

r2
, (4)
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Mass modelling globular clusters in the Gaia era 1411

Figure 5. Inferred global mass function of dark remnants (upper panels) and visible stars (lower panels) from multimass model fits to the mock data from
case 3. The results for the multimass LIMEPY models (Section 4.2) are shown in the left-hand panels, while those from the multimass models of Section 4.3 are
shown in the right-hand panels. The 1σ and 2σ contours are shown with dark and light green-shaded regions, respectively, and the median values are shown
with green lines. The true mass functions are shown with blue histograms. For comparison, we also show with a grey dashed line the best-fitting global mass
function (when describing the global mass function as single power law in the range 0.2 < m < 0.8 M�) from the method of Section 6 based on a grid of
N-body models.

where

β ≡ 1 − σ 2
t

2σ 2
r

(5)

is the anisotropy profile.
The advantage of the above equation is that it links two observable

quantities (density and velocity dispersion profiles) of an arbitrary
sample population to a global quantity (the mass profile generat-
ing the gravitational potential) without any a priori assumption on
the underlying DF. On the other hand, errors on the observational
profiles are enhanced in the derivative calculation often leading to
noisy and/or unphysical results. In the last decades this approach
has been used by several authors on both GCs and dwarf galaxies
(e.g. Gebhardt & Fischer 1995; Ibata et al. 2013; Lützgendorf et
al. 2013) using different techniques to minimize the noise in the
derivatives involved in equation (4).

Here, we describe the results of two different Jeans-modelling
approaches.

5.1 Variable M/L Jeans (Sollima)

In this section we apply the technique described in Sollima et al.
(2016). In particular, the stars brighter than the main-sequence turn-
off (with V < 17) have been used as the tracer population. For these
stars, both LOS velocities and PMs are obtainable with current ob-
servational facilities and with Gaia. The projected number density

profile of this stellar population has been fitted with a sum of 27
Gaussian functions with different variances7 (see also Section 5.2):

	 =
√

2π
∑

i

νisi exp

(
− r2

2s2
i

)
. (6)

The coefficients ν i are used to compute the 3D density profile of the
tracer population:

ν =
∑

i

νi exp

(
− r2

2s2
i

)
. (7)

The variances si have been chosen to increase in logarithmic steps
of 0.1 in the range −1.6 < log (r/pc) < 1. A global density profile
(ρ t) is iteratively updated by choosing appropriate coefficients ν i in
equation (6), and equation (4) has been solved for σ 2

r :

σ 2
r = G(B∞ − Br )

ν exp
(
2
∫

β

r ′ dr ′) , (8)

where

Br =
∫ r

0

Mν exp
(
2
∫

β

r ′′ dr ′′)
r ′2 dr ′. (9)

7Note that according to equation (6), in this formalism the Gaussian func-
tions are defined as a function of the 3D radius (r) and projected into the
plane of the sky to be compared with the observed profile.
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1412 V. Hénault-Brunet et al.

Figure 6. Fit of the multimass King DF model from Section 4.3 to the data set of case 3 (projected number density, LOS velocities, HST and Gaia-like PM
dispersion profiles, and mass function in an annular region between 250 and 350 arcsec). The mock data for the projected number density profile (upper left),
LOS velocity dispersion profile (upper right), PM dispersion profiles (radial component in middle left, tangential component in middle right panel), and local
stellar mass function near the half-mass radius (lower right panel) are shown with blue-filled circles, except the Gaia mock data shown in red. The 1σ and 2σ

confidence regions for the best-fitting model are indicated by the green-shaded area in all panels, and the median values are shown with green lines.

For simplicity, the Osipkov–Merritt (Osipkov 1979; Merritt 1985)
anisotropy profile

β(r) = (r/ra)2

1 + (r/ra)2 (10)

has been adopted, where ra is the radius beyond which orbits become
significantly radially biased. The corresponding projections of the
velocity moments onto the plane of the sky (σ LOS, σ R, and σ T) can
then be computed (see Section B).

The best-fitting coefficients ν i have been chosen by maximizing
the log-likelihood

ln L = −1

2

∑
j

∑
k=LOS,R,T

(
(vk,j − vk)2

σ 2
k + δv2

k,j

+ ln
(
σ 2

k + δv2
k,j

))
(11)

using a Markov Chain Monte Carlo algorithm. In the above equation
the terms δv2

k,j are the uncertainties in the k-th velocity component

of the j-th star. Only positive coefficients have been chosen to ensure
a monotonically decreasing profile. The positivity of the DF across
the energy domain has been tested using the Eddington (1916)
formula (see Sollima et al. 2016).

To convert the velocities in the plane of the sky from physical
units into angular ones, we adopted the true cluster distance in case
1, while for cases 2 and 3 we adopted the distance providing the
same scaling factor between σ LOS, σ R, and σ T in models and mock
observations.

The surface brightness profile has been interpolated using equa-
tion 6 providing a 3D luminosity density profile. Errors have been
calculated using a Monte Carlo algorithm in which, for each mock
measurement (either LOS velocity or PM), a synthetic velocity has
been simulated at the distance of the observed stars from the cluster
centre with velocities randomly extracted from Gaussian functions
with dispersions given by the convolution of the local intrinsic dis-
persion and the individual velocity error of the selected star. The
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Mass modelling globular clusters in the Gaia era 1413

Figure 7. Best-fitting Jeans model (using the technique by Sollima et al.
2016; Section 5.1) to the projected number density, LOS velocity, projected
radial and tangential PM dispersion profiles (from top to bottom, respec-
tively) to the data set from case 3. The 1σ confidence level is indicated by
the green-shaded area in all panels.

same algorithm applied to the observations has then been applied
to the 100 synthetic samples, thus estimating the uncertainties on
all inferred quantities. For all three considered sets of constraints,
the best fit has been obtained by assuming very large values of ra,
corresponding to isotropic models.

The best-fitting model to the full data set (case 3) is shown in
Fig. 7. Again, all the mock profiles are well reproduced by the
model. The Jeans model, which unlike the truncated DF-based
models presented in the previous sections, does not impose a priori
restrictions on the shape of the outer profiles, is better capturing the
flattening of the velocity dispersion profile seen in the Gaia-like
PMs. The M, ϒV, and rh of the cluster (Table 2) are all recovered
within 1σ . Note however that the uncertainties on these quantities
are large and much more conservative than was found with DF-

based models. This can be attributed to the flexibility of the Jeans
model and to the scarcity of data tracing the mass in the outermost
parts of the cluster. With the mass distribution in the outskirts poorly
constrained by the data and not constrained or restricted by an im-
posed DF, global quantities like M and rh become less precisely
constrained. In that sense, the recovered cumulative mass or mass-
to-light ratio profiles (Section 7) are perhaps a fairer way to assess
the performance of Jeans models than these global quantities.

5.2 Variable M/L Jeans (JAM)

In this section, we use the spherical Jeans Anisotropy Multi-
Gaussian Expansion (JAM, MGE) models developed in Cappellari
(2008) and extended in Cappellari (2015). These models assume
that the cluster is spherically symmetric and not rotating,8 which
preliminary analysis of the available mock data suggests is reason-
able for this cluster, but do allow for velocity anisotropy.

Many aspects of the method presented in this section are similar to
the Jeans modelling approach presented in Section 5.1. We thus refer
to Appendix C for details of how the JAM models are computed
and fitted to data, and simply summarize here some of the key
differences and assumptions with this method.

The tracer density profile ν(r) and mass density ρ(r) of the cluster
are again both provided in the form of a Multi-Gaussian Expansion
(MGE), but unlike the models of Section 5.1, we use only 6 Gaus-
sians for the JAM models. Instead of assuming an Osipkov–Merritt
anisotropy profile, anisotropy is provided here per Gaussian com-
ponent of the tracer MGE and allowed to vary non-parametrically
throughout the cluster. To capture the effect of the Galactic tidal
field, we further include a contaminant population that is dominant
at large radii from the cluster centre (see Appendix C). The models
are also fitted to the data discretely, not using the binned profiles.

The surface brightness, velocity dispersion, and anisotropy fits
for case 3 are shown in Fig. 8. We draw 1000 samples from the
final posterior distribution of the fit parameters and then use these
parameters to calculate the corresponding profiles. The dark green
lines show the medians of the profiles, the darker shaded regions
encompass the 15.9 through 84.1 percentiles (effectively the 1σ

confidence regions) and the lighter shaded regions encompass the
2.3 through 97.7 percentiles (effectively the 2σ confidence regions).
In the upper panel, the blue points show the surface brightness
profile calculated from the simulated data, to which we fit directly.
In the middle three panels, the blue and red points show the binned
dispersion profiles calculated from the simulated data; however,
note that we fit to the measurements for the individual stars and not
to these binned dispersion profiles. The binned dispersion profiles
are shown here for comparison purposes only.

The utility in the discrete fits is apparent with our inclusion here
of a contaminant population. Most other methods were forced to
remove the outermost point in the binned PM dispersion profile as
the models were not able to fit this flattening in the profile. Our
discrete approach allows us to include a contaminant population
to capture these outer stars instead of removing them entirely, and
furthermore, allows the models themselves to determine which stars
are more likely to be cluster members and which are more likely to
be contaminants rather than us having to decide at the outset which
stars to keep or exclude.

8For cylindrically symmetric models that can optionally include rotation, we
would turn to the axisymmetric JAM models (Cappellari 2008; Cappellari
2012; Watkins et al. 2013).
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1414 V. Hénault-Brunet et al.

Figure 8. From top to bottom: model fits to the surface brightness, pro-
jected LOS velocity dispersion, projected radial PM dispersion, projected
tangential PM dispersion, and anisotropy profiles for case 3 using the Dis-
crete JAM method (Section 5.2). The dark green lines show the medians of
the profiles, the darker shaded regions encompass the 1σ confidence limits,
and the lighter shaded regions encompass the 2σ confidence limits. The
blue and red points show the profiles calculated from the simulated data.
The inclusion of a contaminant population is seen as the outer bump in
the surface brightness profile and the flattening of the velocity dispersion
profiles at large radii.

The contaminant population is seen as the flattening of the veloc-
ity dispersion profiles at large radii, which nicely fits the outermost
data point. It also gives the outer bump in the surface brightness
profile.9

9This outer shape is somewhat arbitrary; the contaminant density enters pri-
marily via the probability of cluster membership calculated in equation C10

Another feature of these models is the anisotropy profile that
we were able to recover from the fits, as shown in the lower panel
of Fig. 8, where isotropy β

′ = 0 (see equation C4) is marked as
the dotted line. To calculate the ‘true’ anisotropy profile for this
comparison, we selected all stars in the snapshot brighter than
17.5 mag (the adopted faint limit for our HST mock proper mo-
tion data) but with no radial limit; these were then binned in radius
and the spherical anisotropy was calculated using equation 5, where
σ 2

t = 1
2

(
σ 2

θ + σ 2
φ

)
. Again, we did not fit directly to these binned

data points; they are shown for comparison only.
We see that the cluster is close to isotropic, so in this case as-

suming isotropy would not be disastrous, as can be seen by the
successful fits from other methods that assume isotropy. Neverthe-
less, we do see some mild deviations from isotropy, particularly
in the outer regions of the cluster that our models are able to cap-
ture. Tangential anisotropy is not captured by any of the models
of the previous sections, which all allow only for radially biased
anisotropy or isotropy.

The inferred M, ϒV, and rh (Table 2) are all recovered well within
1σ with this method. The uncertainties on these values are rather
conservative, especially when compared to the DF-based models,
for the same reasons as mentioned in Section 5.1 for the other
flavour of Jeans models.

6 G R ID O F N- B O DY MO D E L S

In the approach presented in this section, the cluster properties
and best-fitting profiles were determined by comparing the mock
data (dispersion profiles, surface brightness profile, stellar mass
function) to a grid of ∼1000 scaled N-body simulations, as described
in Baumgardt (2017) and Baumgardt & Hilker (2018). These are N-
body simulations of isolated star clusters containing N = 105 stars
initially and ran with the GPU-enabled version of the collisional
N-body code NBODY6 (Aarseth 1999; Nitadori & Aarseth 2012).

The clusters initially follow a King (1962) density profile, with
concentrations spanning the range 0.2 ≤ c ≤ 2.5 and initial half-mass
radii in the range 2 ≤ rh ≤ 35 pc. The simulations were run up to an
age of 13.5 Gyr, but the cluster models considered in this work were
calculated from snapshots centered around the age of the mock M 4
(�12 Gyr). To account for the preferential removal of low-mass
stars, simulations were run with a Kroupa IMF as well as IMFs
depleted in low-mass stars in order to be able to match the mock
mass function and more accurately estimate the cluster parameters.
The adopted IMFs are defined as a combination of five connected
power laws between 0.1 and 15 M� with breaks at 0.2, 0.5, 0.8, and
1.0 M�. We considered six different sets of parameters defining the
power-law slopes in different mass regimes and their mass limits (for
details, see table 1 of Baumgardt & Hilker 2018). The parameters
are chosen to describe a time sequence of the mass function of a
star cluster starting with a Kroupa IMF in different stages of its
dissolution. Due to the fact that the simulated clusters are isolated,
the chosen IMFs remain more or less unchanged throughout the
evolution, apart from the high-mass end where stellar evolution has
turned stars into remnants. In the simulations, a 10 per cent retention
fraction was assumed for the black holes and neutron stars. The
remaining 90 per cent received kick velocities large enough that

and so for large radii Pcluster = 0 (i.e. Pcontam = 1 for constant background
density νcontam and any Gaussian width scontam). This motivated our choice
to fix the width of the contaminant Gaussian.
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Mass modelling globular clusters in the Gaia era 1415

they immediately left the clusters. The clusters did not contain
primordial binaries.

For each model, 10 snapshots in time spaced by 50 Myr were
combined. The combined N-body snapshots were then scaled in
radius to match the half-light radius of the mock cluster. During the
scaling the mass of the cluster was increased such that the relaxation
time of the cluster was constant. The velocities are also scaled
following equation (2) from Baumgardt (2017). Best-fitting models
are obtained by linearly interpolating the grid of N-body simulations
with varying initial cluster concentration, half-mass radius, and IMF
to find the set of parameters that simultaneously provides the best
match to all the mock data considered. To compare with the mock
stellar mass function, the model clusters were projected onto the
plane of the sky and stars were selected in the same area as the
mock data.

The results from fitting the grid of N-body models to the mock
data (case 3) are shown in Fig. 9 (similar results were obtained for
cases 1 and 2, so we do not show the other fits). The mock profiles
are generally well reproduced by the models. The best-fitting local
mass function is not a perfect match to the mock data, which can
be attributed to the limited flexibility of the current grid of N-body
models regarding the choice of IMF, which is only varied along a
single dissolution sequence.

From the values reported in Table 2, we see that the true M
is recovered within 1σ for cases 1 and 2, and ∼1.5σ away from
the true value for case 3 (∼1500 M� off). The method tends to
systematically underestimate rh (with a 2σ–3σ difference between
the recovered value and the true value). ϒV is also underestimated,
although only in case 2 is the bias in the recovered ϒV significantly
larger than the statistical uncertainties. The dark remnant fraction
is also recovered well, within uncertainties for all cases. Note that
mass function uncertainties are not accounted for in the quoted
uncertainties, but as mentioned above the current grid can vary the
mass function only along a single sequence. This may explain some
of the systematic differences noted above.

We find best-fitting global mass functions with a power-law index
α = −0.54, α = −0.58, and α = −0.65 (when describing the global
mass function as single power law in the range 0.2 < m < 0.8 M�),
respectively, for cases 1, 2, and 3. Comparing this with the observed
global mass function of stars and the best-fitting broken power law
for the multimass models (see Fig. 5), we conclude that the N-body
method also recovers the global mass function reasonably well.

We note that the fits in this section were performed by considering
only the stars (in the models and observations) within 2000 arcsec
in projection from the cluster centre, i.e. roughly within the Jacobi
radius of the cluster. Because the method currently relies on a grid
of isolated N-body models, it does not allow to capture the effect of
tides on the dynamics of stars near the Jacobi radius and beyond.
We indeed see from Fig. 9 that the best-fitting model does not match
the outermost PM data point. In practice, with real data, one could
adopt a similar approach by estimating the Jacobi radius with an
initial estimate of the cluster orbit (thanks to Gaia) and cluster
mass.

7 C OM PA R ISON O F THE ENCLOSED MASS
AND M A SS- TO - LIGHT RATIO PROFILES

The strengths, limitations, and general performance of the different
methods considered in this work are already becoming apparent
from the previous sections and Table 2, but here we push the com-
parison further by directly comparing the inferred enclosed mass
and mass-to-light ratio profiles.

For all methods, Fig. 10 displays for the case 1 data set the ratio
of the inferred cumulative mass profile to the true cumulative mass
profile (in 3D; left-hand panel), and the inferred 3D mass-to-light
ratio profile (right-hand panel). Figs 11 and 12 display the same
quantities but for the case 2 and case 3 data sets, respectively. Un-
surprisingly, including the HST-like PMs usually improves the re-
covered profiles in the central regions compared to the fits with LOS
velocities alone, and including the Gaia-like PMs then improves the
outer profiles. As expected, the error bars on the recovered mass
and mass-to-light ratio profiles generally shrink in the radial range
of the additional kinematic data considered.

The obvious limitations of single-mass DF-based are readily ap-
parent from looking at these figures, regardless of the richness of
the kinematic data available. These models always systematically
underestimate the mass in the very central region and then overesti-
mate the cumulative mass at intermediate distances from the centre,
but slightly underestimate the total mass (unless kinematic data cov-
ers the external regions of the cluster). The cumulative mass profile
comparison shows that mass is clearly missing from these models
in the inner and outer regions, most likely due to the inability of the
single-mass DF-based models to account for the presence and dif-
ferent spatial distribution of heavy dark remnants (concentrated in
the inner regions) and faint low-mass stars (preferentially located in
the external parts of the cluster). The way for the model to mitigate
these limitations while still providing a satisfying fit to the mock
data appears to overpredict the amount of mass in the intermediate
regions (within and around the half-mass radius). So not only can
single-mass models underestimate the total mass (e.g. Shanahan &
Gieles 2015; Sollima et al. 2015), they may also lead to an overesti-
mate of the gravitational acceleration in the most commonly studied
regions of clusters. This has potentially important consequences for
the interpretation of pulsar timing data and inferred accelerations
(used to probe the gravitational potential of GCs) when based on
simple dynamical models in which mass follows light (e.g. Freire
et al. 2017; Prager et al. 2017). We note that single-mass DF-based
models with potential escapers yield similar results, but they allow
to trace the mass profile further out by including the population of
potential escapers at large radii.

Multimass DF-based models provide a better description of the
cumulative mass profile. Both the three-component model (Sec-
tion 4.1) and the multimass model from Section 4.3 (based on
Gunn & Griffin 1979) however underestimate the mass in the core
(although only within a region corresponding to ∼3 per cent of the
half-mass radius), possibly because they slightly underestimate the
total mass fraction in remnants and ignore the contribution of heav-
ier remnants such as neutron stars. The multimass LIMEPY models
from Section 4.2, which allowed more freedom in the total mass and
mass function of remnants, recover the inner mass profile within the
uncertainties even though these uncertainties are large in the inner-
most region. All multimass models very slightly overestimate the
mass at intermediate radii.

The Jeans models (the flavours from both Section 5.1 and Sec-
tion 5.2) are able to reproduce the enclosed mass profiles well
overall, typically as well as the best of the DF-based models; this
is because they are able (indirectly) to account for the presence
of different mass populations and account for their different spa-
tial distributions, although they do not produce a mass function or
directly quantify the degree of mass segregation as the multimass
models are able to do. Global quantities, like M and rh, are accu-
rately but not as precisely determined by Jeans models (larger error
bars than other methods), however the models do provide the most
conservative and realistic error bars on the recovered cumulative
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1416 V. Hénault-Brunet et al.

Figure 9. Fit of the grid of N-body models from Section 6 to the data set of case 3 (surface brightness, LOS velocities, HST and Gaia-like PM dispersion
profiles, and mass function in an annular region between 250 and 350 arcsec). The mock data for the surface brightness profile (upper left), local stellar mass
function (upper right panel), LOS velocity dispersion profile (lower left), and PM dispersion profile (lower right; σ PM = (σ PM, R + σ PM, T)/2) are shown
with blue-filled circles, except the Gaia mock data shown in red. The 1σ confidence regions for the best-fitting model are indicated (when available) by the
green-shaded area, and the median values are shown with green lines.

mass profile (the true profile is generally recovered within the un-
certainties), with no significant bias in a particular direction. This
is where the strength associated with the flexibility of these models
becomes apparent.

For the method based on a grid of N-body models (Section 6), for
which the effect of mass segregation is built in from first principles,
the cumulative mass profile is generally well recovered. The en-
closed mass is only slightly overestimated (but within ∼20 per cent
or better from the true value) for most of the radial extent of the
cluster. Only in the inner 0.1 pc is the enclosed mass more signif-
icantly overestimated (a factor ∼1.5–2 larger than the true value).
This discrepancy in the centre could be related to the fact that the
N-body models have no or too few binaries to heat the cluster core.
Note that in its current implementation, the method does not yield
uncertainties on the recovered mass and mass-to-light ratio profiles.

Apart from the single-mass DF-based models that have the obvi-
ous limitation of assuming a constant mass-to-light ratio profile, all
other models considered satisfyingly reproduce the mass-to-light
ratio profile, regardless of the combination of kinematic data sets
used. Again, Jeans models provide the most conservative and re-
alistic error bars on the mass-to-light ratio profiles, especially in
the outskirts of the cluster. Multimass DF-based models however
still have the advantage that the variation of the mass-to-light ratio
with radius can easily be connected with mass segregation and the
relative contribution of different mass species at different distances
from the centre. This can be useful, for example, to establish if white
dwarfs, neutron stars, or stellar-mass black holes are dominating the
inferred increase in the mass-to-light ratio towards the cluster centre
(e.g. Illingworth & King 1977; Gieles et al. 2018). In the case of the
M 4 N-body snapshot studied here, the increase in the mass-to-light
ratio towards the centre is caused by white dwarfs dominating the
mass density in the inner regions, a piece of information that is
straightforward to extract from the best-fitting multimass models.

The inferred enclosed mass and mass-to-light ratio profiles for the
Jeans models display fluctuations (especially in the outer regions)
that have no physical basis. Both types of Jeans models treat the
densities as a sum of Gaussians, and there is a delicate balance to
choosing the number of Gaussians for a fit: when using too few
of them, the model does not accurately represent the cluster,10 but
when using too many there is the risk of overfitting the data. The
models in Section 5.1 use 27 Gaussians, with widths evenly spaced
in log radius at fixed values, chosen so as to sample the density
everywhere; whereas the models in Section 5.2 use just 6 Gaussians
and allow the widths to vary so as to position themselves where they
need to be to get the best fit. Clearly both approaches are successful
and are able to provide a good fit to the cluster overall. The larger
fluctuations in the models from Section 5.1 are likely because of the
large number of Gaussians used that are able to fit any fluctuations
in the data at the location where that Gaussian dominates, physical
or not. In principle, one could try to improve this aspect of the Jeans
modelling by tuning the number of Gaussians used to fit the profiles
and/or by adopting specific priors, but with real data for which
the underlying mass profile is not known, this is not necessarily
practical.

8 D ISCUSSION

We compared different mass-modelling methods against mock data
from an N-body simulation of M 4 and found that all the models
considered generally provide a satisfying fit to the data. However,
depending on one’s scientific goal and available data, differences
between the approaches and models mean that different techniques

10The models in Section 5.2 were also run with 5 Gaussians but the quality
of the fits was significantly worse.
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Mass modelling globular clusters in the Gaia era 1417

Figure 10. Left: Comparison of the inferred enclosed mass profiles in 3D (divided by the true enclosed mass profile) from the different methods for the mock
data set of case 1. Right: Comparison of the inferred 3D V-band mass-to-light profiles from the different methods for the mock data set of case 1. The true
mass-to-light ratio profile computed from the N-body model snapshot is represented by blue-filled circles. Solid lines indicate the median, dark shaded green
regions the 1σ contours, and light shaded green regions the 2σ contours (when available).

can be more efficient, suitable, or biased. That dynamical models
are able to fit the data well is perhaps not so surprising, given the
number of free parameters in some of these models. The fact that a
mass model provides a good fit to structural and kinematic data of a
GC however does not necessarily imply that this model is a faithful
representation of the mass distribution within the cluster. This is
why, we also compared other quantities such as global properties
(M, rh, ϒV, etc.) and cumulative mass or mass-to-light ratio profiles

that are predicted by the best-fitting mass models but not directly
involved in the fitting procedure (and not available when fitting real
data).

Single-mass DF-based models are still a possible way to obtain
a first-order estimate of the global properties of a stellar cluster,
such as its total mass and half-mass radius. Note however that
if the kinematic tracers (generally bright stars more massive than
the mean cluster star) are concentrated in the inner regions of the
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1418 V. Hénault-Brunet et al.

Figure 11. Same as Fig. 10 but for the mock data set of case 2.

cluster and do not cover the full radial extent, these models will tend
to significantly underestimate the total mass and half-mass radius,
while also overestimating the amount of mass at intermediate radii.
When the kinematic data cover a significant extent of the cluster
(e.g. including Gaia proper motions in the outer parts), the single-
mass models perform better as the kinematics of the tracer stars in
the outer parts is much more similar to the kinematics of the average
cluster star.

However, as data further and further out are included, and the
velocity dispersion profile starts to flatten due to potential esca-

pers, the inability of lowered isothermal models to account for the
outermost kinematic data can drive the fits towards models with
largely overestimated masses and half-mass radii, and poor fits to
the surface brightness profile (this caveat also applies to multimass
lowered isothermal models). In this case the outermost data points
would have to be ignored in a fitting procedure to provide a sat-
isfying description of the cluster closer in. Since the region where
potential escapers affect the observed kinematics is generally poorly
constrained, unknown biases may creep in the analysis when blindly
fitting truncated models to data covering the outskirts of clusters.
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Mass modelling globular clusters in the Gaia era 1419

Figure 12. Same as Fig. 10 but for the mock data set of case 3.

Similar care is recommended when fitting a grid of isolated N-body
models (as in Section 6) because these will not capture the flattening
of the velocity dispersion profile due to tides. We have shown that
DF-based models including potential escapers are a promising way
to avoid possible biases caused by the outermost data points. At the
moment, however, only a single-mass version of these models has
been developed, and so these models are still subject to biases due to
ignoring the effect of mass segregation. We have also shown that by
including a simple population of ‘contaminants’ that is dominant at
large radii, Jeans models can in principle account for the outermost

data points without fine-tuning. The extremely simple contaminant
model used here does not offer the same physical insight about tidal
effects that is provided by DF-based models with potential escapers,
although a more sophisticated model that encompasses the nature
of the contaminants could be included.

We have considered three-component DF-based models as the
simplest way to improve on single-mass models by approximately
including the effect of a mass spectrum and mass segregation with-
out a measurement of the stellar mass function inside the clus-
ter. We note that multimass models are not necessarily better (see
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Section 4.1.1 for details) in that using a wrong or ill-informed mass
function that is not representative of the mass function of the cluster
can give systematic biases of similar magnitude as the single-mass
models (an overestimate of the total mass and half-mass radius in
the case studied here). However, when leaving some freedom to ad-
just the stellar mass function of the models guided by the kinematic
and structural data, we found that three-component models can per-
form very well and properly capture the effect of mass segregation.
This was done by fitting on the mean mass of dark remnants and
the fraction of mass in remnants, adopting standard assumptions for
the mean mass of the other mass bins (low-mass stars and bright
visible stars) and assuming that visible stars are tracers with neg-
ligible contribution to the total cluster mass. These models would
be particularly well-suited to apply to partially resolved clusters or
resolved clusters with limited data available (e.g. no stellar mass
function measurement), for example to infer dynamical masses and
avoid biases due to neglecting mass segregation.

When a measurement of the local stellar mass function within the
cluster is available, multimass DF-based models with a full mass
spectrum (i.e. a large number of mass bins) and fitting a grid of
N-body models are reliable ways to infer the global mass function
and global parameters such as the total mass, half-mass radius,
mass-to-light ratio, and fraction of cluster mass in remnants. They
also satisfyingly recover the cumulative mass and mass-to-light
ratio profiles. However, given the limited variety of IMFs that can
be considered in the grid of N-body models, this method has less
flexibility and may not recover the global/stellar mass functions as
precisely as the multimass models. It also makes it more challenging
to quantify uncertainties on the mass function.

In addition to testing a previously used version of multimass
DF-based models with a prescription for the mass function of rem-
nants, we introduced and tested a variant with the total mass in
remnants and remnant mass function free to vary. The success of
this type of model in recovering the total mass in remnants and
estimating their mass function (while only using information from
visible stars) opens up exciting possibilities to weigh populations
of heavy remnants in GCs with fast and flexible DF-based models.
More testing will be needed on mock data and models with differ-
ent remnant mass functions (e.g. with a larger population of black
holes), but ultimately it will be interesting to compare such an ap-
proach with other methods trying to infer populations of black holes
in GCs based on their present-day structural and internal kinematic
properties, usually based on a sparse grid and limited number of
evolutionary models (Arca Sedda et al. 2018; Askar et al. 2018;
Peuten et al. 2016; Kremer et al. 2018; Weatherford et al. 2018).
The size of present-day black hole populations in Milky Way GCs
is an important ingredient to understand the formation of binary
black holes generating gravitational wave signals.

If one is not concerned with inferring the global mass function
and directly modelling the dynamics of different mass components,
then Jeans modelling is another efficient way to constrain the non-
constant mass-to-light ratio profile caused by mass segregation. We
found that the flexibility of Jeans models tends to lead to more
conservative and realistic errors bars (free of systematic biases) on
the global cluster properties and on the recovered cumulative mass
and mass-to-light ratio profiles, even though global quantities like
the total mass and half-mass radius are not precisely measured due
to the lack of constraints in the outer parts of the cluster (both from
scarcity of data and from the absence of restrictions in the model).
One could envisage situations where Jeans modelling is first used
to constrain the underlying mass profile, which is then used as
a prior for a different mass-modelling technique, for example a

multimass DF-based model with which further insight is obtained
on the mass function and distribution of different mass components.
Jeans modelling also offers another way to infer the fraction of
cluster mass in dark remnants by determining the mass profile (using
kinematics) and subtracting the stellar mass from star counts (if deep
enough photometry is available) to obtain the fraction of remnants
as a function of distance from the cluster centre (Sollima et al.
2016).

9 SU M M A RY A N D C O N C L U S I O N S

We summarize our findings with the few take-home messages be-
low, as well as a list of pros, cons, and minimal recommended data
for the different methods in Table 6. These can serve as a starting
point for choosing the most appropriate mass-modelling method for
a given problem.

(i) Single-mass DF-based models (Section 3) can be used to
estimate the global properties of a cluster but they are prone to
biases because they do not capture the effect of mass segregation.
They tend to significantly underestimate the total mass and half-
mass radius, although this can be mitigated by including kinematic
data covering a wide extent of the cluster.

(ii) Three-component DF-based models (Section 4.1), leaving
freedom to adjust the mass function, represent a simple way to
overcome the biases of single-mass models. They would be well-
suited to cases where data are limited (e.g. no stellar mass function)
but a more accurate estimate of the dynamical mass or half-mass
radius is needed (compared to single-mass models).

(iii) The use of multimass DF-based models with a more realistic
mass spectrum (Sections 4.2 and 4.3) or a grid of N-body models are
indicated to infer the present-day global stellar mass function of a
cluster from knowledge of its local stellar mass function, kinematics,
and structural properties.

(iv) Multimass DF-based models (including the three-component
flavour), a grid of N-body models, and Jeans models are all suitable
options to recover the radially-varying mass-to-light ratio profile of
GCs, with the first two allowing to estimate the contribution of dif-
ferent types of stars to this profile. On the other hand, Jeans models,
because of their flexibility can lead to unrealistic fluctuations.

(v) Methods based on Jeans models (in combination with deep
enough photometry to estimate the mass in stars), a grid of N-body
models and multimass models can all be used to infer the fraction of
cluster mass in dark remnants. The latter have the advantage that the
effect of different remnant mass functions on the cluster dynamics
can be explored, and by leaving it free to vary this remnant mass
function can potentially be constrained (see Section 4.2).

(vi) Multimass DF-based models, Jeans models, and fitting a grid
of N-body models can all reliably recover the mass profile of a mass
segregated cluster, as opposed to single-mass DF-based models that
systematically underestimate the mass in the very central region and
overestimate the mass at intermediate radii (Section 7).

(vii) Jeans models tend to provide the most conservative and
reasonable uncertainties on the recovered mass profile, with no
significant bias (Section 7). However, because the outer parts of
these models are less constrained, global quantities such as the total
mass and half-mass radius tend to be less precisely determined
(although with good accuracy, i.e. within the errors).

(viii) An important caveat to the points above is that when includ-
ing kinematic data in the very outskirts of a cluster (as Gaia will
enable), the use of lowered isothermal DF-based models (single-
mass and multimass) or of a grid of isolated N-body model reach a
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Table 6. Summary of the mass-modelling methods compared in this work.

Modelling method Pros Cons Minimal recommended data

A. Single-mass LIMEPY DF
(Section 3.1)

∗ Fast and simple way to estimate
global cluster properties.

∗ Prone to biases: underestimates the
total mass and half-mass radius. ∗
Effect of PEs not included, kinematics
in cluster outskirts should be ignored
for good fit. ∗ Assumes constant M/L
profile. ∗ Systematically
underestimates the mass in the very
central region and overestimates the
mass at intermediate radii.

∗ Velocity dispersion profile. ∗
Surface density or brightness profile.

B. Single-mass SPES DF
(with PEs) (Section 3.2)

∗ Only DF model to capture the effect
of PEs and the kinematics in cluster
outskirts.

∗ Effect of mass segregation not
captured, so prone to same biases as
method A. ∗ Systematically
underestimates the mass in the very
central region and overestimates the
mass at intermediate radii. ∗ Assumes
constant M/L profile. ∗ Two additional
free parameters.

∗ Velocity dispersion profile. ∗
Surface density or brightness profile.
∗ Good kinematics and star counts
needed in the outer parts to constrain
the two additional parameters.

C. 3-component LIMEPY DF
(Section 4.1)

∗ Simplest DF model to capture the
effect of mass segregation, the
variation of M/L with radius, and to
estimate cluster ‘dark’ mass. ∗ No
mass local mass function measurement
required.

∗ Effect of PEs not included,
kinematics in cluster outskirts should
be ignored for good fit.

∗ Velocity dispersion profile. ∗
Surface density or brightness profile.

D. Multimass LIMEPY DF
(Section 4.2)

∗ Allows to infer present-day global
stellar mass function, and fraction of
mass in dark remnants. ∗ Captures
variation of M/L with radius. ∗
Freedom in remnants can be used to
constrain remnant mass function.

∗ Effect of PEs not included,
kinematics in cluster outskirts should
be ignored for good fit.

∗ Velocity dispersion. ∗ Surface
density or brightness profile. ∗ Local
stellar mass function(s) or density
profile for several mass components.

E. Multimass King DF
(Section 4.3)

∗ Allows to infer present-day global
stellar mass function, and fraction of
mass in dark remnants. ∗ Captures
variation of M/L with radius.

∗ Effect of PEs not included. ∗ No
freedom in remnant mass function
(fixed prescription used).

∗ Velocity dispersion. ∗ Surface
density or brightness profile. ∗ Local
stellar mass function(s) or density
profile for several mass components.

F. Variable M/L Jeans
(Sollima) (Section 5.1)

∗ Captures variation of M/L with
radius. ∗ More conservative and
realistic uncertainties on enclosed
mass profile (no bias).

∗ Flexibility (the number of Gaussians
to fit the tracer density profile) can
lead to unrealistic or unphysical
fluctuations in the inferred mass and
mass-to-light ratio profiles. ∗ Outer
parts of models less constrained, so
larger uncertainties on global
quantities like total mass and
half-mass radius.

∗ Velocity dispersion. ∗ Surface
density profile. ∗ Optional: deep
photometry (to estimate stellar mass
from star counts and subtract it from
total mass to estimate fraction of
remnants).

G. Variable M/L Jeans
(JAM) (Section 5.2)

∗ Captures variation of M/L with
radius. ∗ More conservative and
realistic uncertainties on enclosed
mass profile (no bias). ∗ Kinematics in
the cluster outskirts can be captured by
including a population of contaminants
dominant at large radii. ∗ More
flexibility with anisotropy.

∗ Outer parts of models less
constrained, so larger uncertainties on
global quantities like total mass and
half-mass radius.

∗ Velocity dispersion. ∗ Surface
density or brightness profile. ∗
Optional: deep photometry (to
estimate stellar mass from star counts
and subtract it from total mass to
estimate fraction of remnants).

H. N-body grid (Section 6) ∗ Allows to infer present-day global
stellar mass function, and fraction of
mass in dark remnants. ∗ Captures
variation of M/L with radius.

∗ Effects of PEs and flattening of the
velocity dispersion profile due to tides
not captured by grid of isolated
N-body models. ∗ Less flexibility:
limited IMF variety in current grid of
models, global mass function may not
be recovered as precisely as multimass
models and uncertainties on global
mass function more challenging to
estimate.

∗ Velocity dispersion. ∗ Surface
density or brightness profile. ∗ Local
stellar mass function(s) or density
profile for several mass components.
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1422 V. Hénault-Brunet et al.

fundamental limitation. These models cannot reproduce the flatten-
ing in the outer velocity dispersion profile due to potential escapers.
Unless these kinematic data in the cluster outskirts are ignored when
fitting the models, this can lead to overestimating the cluster mass
and radial extent.

(ix) DF-based models including potential escapers (Section 3.2)
are necessary to capture the kinematics in the cluster outskirts and
overcome the limitations of lowered isothermal models. This can
also be achieved with Jeans models (Section 5) by including a
population of contaminants that is dominant at large distances from
the cluster centre.

Our study is limited to one snapshot from a specific N-body simu-
lation, so we have to be careful not to overgeneralize our results, and
we caution that some of the remarks above may not apply to certain
situations. We also note that we analyzed mock data corresponding
to the most nearby GC and optimistic conditions. With lower-quality
or limited kinematic or mass function data, some of the applications
discussed above (like constraining the mass function of remnants)
may prove challenging and would warrant further testing. Never-
theless, our comparison provides initial guidelines for the choice
and applicability of different mass-modelling approaches. We also
hope that it serves as a template and example to follow for future
tests of dynamical modelling methods on mock data before these
are applied to real data to draw conclusions.
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MNRAS, 464, L36
Askar A., Arca Sedda M., Giersz M., 2018, MNRAS, 478, 1844
Astropy Collaboration, 2013, A&A, 558, A33
Baumgardt H., 2001, MNRAS, 325, 1323
Baumgardt H., 2017, MNRAS, 464, 2174
Baumgardt H., Hilker M., 2018, MNRAS, 478, 1520
Baumgardt H., Makino J., 2003, MNRAS, 340, 227
Baumgardt H., Sollima S., 2017, MNRAS, 472, 744
Bedin L. R., Piotto G., King I. R., Anderson J., 2003, AJ, 126, 247
Bellini A. et al., 2014, ApJS, 797, 115
Bianchini P., van der Marel R. P., del Pino A., Watkins L. L., Bellini A.,

Fardal M. A., Libralato M., Sills A., 2018, MNRAS, 481, 2125
Braga V. F. et al., 2015, ApJS, 799, 165
Breen P. G., Heggie D. C., 2013, MNRAS, 432, 2779
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APPEN D IX A : MULTIMASS K ING D F

The DF defined in equation (1) is integrated in the velocity domain
at each radius to obtain the density (ρ j) and velocity dispersion
profiles in both the radial and tangential components (σ r, j, σ t, j) of

all mass species and projected on the plane of the sky (	, σ LOS, σ R,
σ T):

ρj (r) = 4π

∫ √−2φ

0

∫ √
−2φ−v2

r

0
vtfj (r, vr, vt) dvtdvr (A1)
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APPENDI X B: VARI ABLE M/ L JEANS MODELS
(SOLLI MA)

With the tracer density profile and and the velocity dispersion pro-
file determined as indicated in Section 5.1, the projections of the
velocity moments onto the plane of the sky (σ LOS, σ R, and σ T) as a
function of projected radius R for the tracer population are derived
through the following relations:
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APPENDI X C : VARI ABLE M/ L J EANS (JAM)
M O D E L S

C1 JAM models

A key feature of the JAM models is that both the tracer density
profile ν(r) and mass density ρ(r) of the cluster are provided in the
form of a Multi-Gaussian Expansion (MGE). Under the assumption
of spherical symmetry, each Gaussian component j of the tracer
MGE and k of the mass MGE is defined by two parameters: a
central density (ν j or ρk) and a width (sj or sk). Then the tracer
density profile is

ν (r) =
NTD∑
j=1

νj exp

(
− r2

2sj

)
, (C1)
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and the mass density profile is

ρ (r) =
NMD∑
k=1

ρk exp

(
− r2

2sk

)
, (C2)

where NTD is the total number of tracer density Gaussian com-
ponents and NMD is the total number of mass density Gaussian
components.13 Parameterizing the profiles in this form makes them
extremely easy to project onto the plane of the sky (or, conversely,
to deproject surface density profiles) and the projected profiles are
themselves MGEs. This is particularly useful as, in practice, we
can typically only measure the surface tracer density profile from
observations, so we fit to the projected profile and then deproject it
to get the 3D profile.

It is typical for analyses of real clusters to use the luminosity
density profile μ(r) as a proxy for the tracer density profile – that
is, ν(r) = Cμ(r) for some constant C – so we adopt this approach
here.14 In fact, for the JAM models, we need only the shape of the
tracer density profile and not its normalization, so it is more accurate
to say that we use the shape of the luminosity density profile as a
proxy for the shape of the tracer density profile; we do not need to
know or even assume anything about the relative normalizations of
the two profiles and can assume that C = 1.

Using the mass density and luminosity density profiles, we can
also calculate the mass-to-light profile ϒ(r) of the cluster as

ϒ (r) = ρ (r)

μ (r)
. (C3)

Here, we assume that the MGEs have the same number of Gaus-
sian components (NTD = NMD), and that the Gaussian widths are
the same {sj} = {sk}; the widths themselves are free parameters.
The central densities ρk and νk are also left free and are indepen-
dent of each other, which allows us to fit the light and mass density
profiles non-parametrically, and allows the mass-to-light ratio to
vary throughout the cluster. In this way, the models account for the
different spatial distributions of different mass populations, albeit
without explicitly identifying the underlying mass function.

Anisotropy is provided per Gaussian component of the tracer
MGE. We wish to allow the anisotropy to vary non-parametrically
through the cluster, so assign each component k an anisotropy βk. As
defined, anisotropy (equation 5) lies between 1 (radial anisotropy)
and −∞ (tangential anisotropy), with isotropy at β = 0. The high
antisymmetry in β and the infinite lower limit on β both make it a
hard parameter to fit for, so instead we follow Read et al. (2006)
and use a modified anisotropy parameter

β ′ = β

2 − β
(C4)

for which β
′ = 0 still indicates isotropy, positive β

′
values still

indicate radial anisotropy, and negative β
′

values still indicate tan-
gential anisotropy, but which has the pleasing properties of being
symmetric about isotropy and finite, restricted to the range [ − 1,
1].

13This approach is similar to that in Section 5.1, though it is not standard
for all flavours of Jeans models.
14The two profiles can, in fact, be very different owing to the internal
processes that have shaped the cluster. However, in this case, the assumption
is fortunately quite reasonable.

Overall, the cluster models have 4N free parameters: {νk, ρk, sk,
βk}. We choose to use N = 6 here, so we have 24 free parameters
for the cluster.15

The simulated cluster was evolved in a tidal field and so was
affected by the interaction with the Galactic tidal field. Some tidally
stripped stars or potential escapers remain in the simulated data set,
so we further include a contaminant population that is dominant at
large radii to correctly fit these stars. We model the contaminant
density as an extra Gaussian with surface brightness νcontam and
width scontam. In practice, νcontam and scontam are degenerate, so we
choose to allow νcontam to be free and fix scontam to be the value
of the outermost data point in the surface brightness profile. We
assume that the velocity dispersion of the contaminant population is
isotropic and equal to σ contam, which is also left free. This introduces
a further two free parameters: {νcontam, σ contam}.

Both the JAM models for the cluster and our model for the con-
taminant population make predictions for the velocity dispersions
in physical units. To compare with the mocks, we convert the veloc-
ities (vR, vT) into PMs (μR, μT) using the distance D to the cluster.
This adds another free parameter (apart from case 1 where the dis-
tance is fixed to the true distance because only LOS velocities are
used). In total, we thus have 27 (26 for case 1) free parameters for
our models.

C2 Model fitting

We fit the JAM models to the surface brightness profile and the
velocity dispersion profiles simultaneously. To recover the surface
brightness profile, we fit to the binned profile calculated from the
simulated data. We compute the likelihood of each data point i
at location ri with value μV, i ± δV, i given the model prediction
μmodel(ri),

LSB =
NSB∏

i

1√
2πδV,i

exp

(
− (

μmodel (ri) − μV,i

)2

2δ2
V,i

)
, (C5)

where NSB is the number of points in the surface brightness profile,
and the uncertainties δV, i are assumed to be 10 per cent of the surface
brightness values μV, i.16

The models make predictions about the velocity dispersion pro-
files for the cluster and the contaminant population. To assess how
well a model dispersion profile fits a given data set, we use the
discrete approach described in Watkins et al. (2013) whereby we
compute the likelihood Li of observing a star i at projected dis-
tance Ri from the cluster centre with velocity (vR, i ± δR, i, vT, i ±
δT, i, vLOS, i ± δLOS, i) given the model prediction for the velocity
distribution at Ri, which we assume to be Gaussian with velocity
dispersions (σ R, i, σ T, i, σ LOS, i). As the models are non-rotating, the
mean velocity is everywhere 0, and the dispersions are uncorrelated,
that is, the cross-terms in the velocity ellipsoid tensor are 0. In this
case, the likelihood of each velocity component can be considered

15On the one hand, we want as few Gaussians as possible to limit the number
of free parameters, and on the other hand we need a sufficient number of
Gaussians to adequately describe the cluster. We ran models with N = 5 and
found that these did not perform well at the centre. Using N = 6 improved
the central fits. Using N = 7 did not make a significant difference compared
to the N = 6 models.
16We adopted ∼10 per cent uncertainties on the surface brightness profile as
rough error estimates based on bootstrapping experiments with mock cluster
data, but in any case the uncertainties on the overall fits are dominated by the
uncertainties on the kinematics, so the models are insensitive to this choice.
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independently. The projected radial velocity likelihood LR,i for star
i is then

LR,i = 1√
2π

(
δ2

R,i + σ 2
R,i

) exp

(
−v2

R,i

2
(
δ2

R,i + σ 2
R,i

)
)

, (C6)

and similarly for the projected tangential velocity likelihood LT,i

and the LOS velocity likelihood LLOS,i .17 The likelihood of the
model given all the line-of-sight velocity measurements is then

LRV =
NRV∏
i=1

LLOS,i , (C7)

where NRV is the size of the LOS velocity data set, and the likelihood
of the model given all PM measurements is

LPM =
NPM∏
i=1

LR,iLT,i , (C8)

where NPM is the size of the PM data set. Note that in all of these
calculations we have assumed that PMs (μR, μT) have been con-
verted to velocities (vR, vT) using the distance D to the cluster.
When we have only LOS velocities (case 1), the total likelihood
from the kinematics for a given population is Lkin,pop = LRV. When
we have both LOS velocity and PM data sets (cases 2 and 3), the
total likelihood from the kinematics is Lkin,pop = LRVLPM.

For each star, we assess the likelihood of the observed kinematics
given the cluster model Lkin,cluster and the likelihood of the observed
kinematics given the contaminant model Lkin,contam. To calculate the
total likelihood from the kinematics, we combine the likelihoods
from the two populations via

Lkin = PclusterLkin,cluster + (1 − Pcluster)Lkin,contam, (C9)

where Pcluster is the probability of the star being a cluster member
and not a contaminant, which is derived from the densities of the
two populations via

Pcluster = νcluster (r)

νcluster (r) + νcontam (r)
. (C10)

Finally, the total likelihood is given by

L = LSBLkin. (C11)

We restrict the range of certain parameters using priors. To avoid
having components with negative light or negative mass, we force
the νk and ρk parameters to be positive, but otherwise use a flat
prior for these values. Similarly, we require the distance D to be
positive, but otherwise use a flat prior on the distance. For the
Gaussian widths sk, we require that sk < sk + 1 and restrict the extent
of the innermost and outermost Gaussians by insisting that s1 >

Rmin and s6 < Rmax/
√

3, where Rmin and Rmax are the minimum
and maximum radial points of the mock surface brightness profile,

respectively. The factor
√

3 in the latter restriction forces the profiles
to have an outer slope of 3 or larger, and thus to be finite.

As discussed, β
′
ranges between [−1,1], so in theory all we need

is a flat prior in this range. However, anisotropy characterization
requires at least two orthogonal velocity components, so with LOS
velocities only we are unable to fit for the anisotropy and, thus, break
the degeneracy between anisotropy and mass. This is a problem for
case 1 where we have LOS velocities only, but also for the outer
regions of the cluster in case 2 as the HST-like PMs only cover

17This is the same approach adopted in Section 5.1, see equation (11).

the central regions. We could further assume that the cluster is
isotropic (i.e. β ′

k = 0) in the regions where we lack PM data, as is
usual for studies of real clusters in the absence of prior anisotropy
information, however as the Gaussian widths are left free, it is not
possible to set a priori which Gaussians cover the range of the PM
data (where the anisotropy can be left free) and which are outside
(where we may wish to assume a value). Instead, here we choose to
leave the anisotropy free everywhere but to provide a strong prior
on the β ′

k values:

P
(
β ′

k

) =

⎧⎪⎨
⎪⎩

1, β ′
k ≤ μβ ′

1√
2πσβ ′

exp

(
−
(
β ′

k − μβ ′
)2

2σ 2
β ′

)
, β ′

k > μβ ′ .

This imposes a flat prior for β
′
in [−μβ ′ , μβ ′ ] and then uses a Gaus-

sian fall off for β ′
k values outside this range. As we do not expect the

anisotropy to be extreme in either direction, we choose μβ ′ = 0.2
and σβ ′ = 0.02. Essentially, we are assuming that the system is near
isotropic but acknowledge that it may not be exactly isotropic and
so we let it explore some mildly-anisotropic options. Further, the
anisotropy for each Gaussian is affected by the anisotropy of the
neighbouring Gaussians, so by leaving them all some freedom, they
can respond to the neighbouring values where there may be better
constraints. For the RV-only case, we could simply assume isotropy,
but preferred to treat all cases the same.

Finally, we calculate the posterior probability by multiplying
together the likelihood and the priors. To determine the best-fitting
family of models, we wish to find the region of parameter space
for which the posterior is maximized. To efficiently explore our
parameter space and determine the region where the best-fitting
models are located, we use the affine-invariant Markov Chain Monte
Carlo (MCMC) ensemble sampler EMCEE (Foreman-Mackey et al.
2013). Our MCMC runs each use 1000 walkers and we run for
10 000 steps.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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