24 research outputs found

    Genes from a translational analysis support a multifactorial nature of white matter hyperintensities

    Get PDF
    Background and Purpose—White matter hyperintensities (WMH) of presumed vascular origin increase the risk of stroke and dementia. Despite strong WMH heritability, few gene associations have been identified. Relevant experimental models may be informative.<p></p> Methods—We tested the associations between genes that were differentially expressed in brains of young spontaneously hypertensive stroke–prone rats and human WMH (using volume and visual score) in 621 subjects from the Lothian Birth Cohort 1936 (LBC1936). We then attempted replication in 9361 subjects from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE). We also tested the subjects from LBC1936 for previous genome-wide WMH associations found in subjects from CHARGE.<p></p> Results—Of 126 spontaneously hypertensive stroke–prone rat genes, 10 were nominally associated with WMH volume or score in subjects from LBC1936, of which 5 (AFP, ALB, GNAI1, RBM8a, and MRPL18) were associated with both WMH volume and score (P<0.05); 2 of the 10 (XPNPEP1, P=6.7×10−5; FARP1, P=0.024) plus another spontaneously hypertensive stroke–prone rat gene (USMG5, P=0.00014), on chromosomes 10, 13, and 10 respectively, were associated with WMH in subjects from CHARGE. Gene set enrichment showed significant associations for downregulated spontaneously hypertensive stroke–prone rat genes with WMH in humans. In subjects from LBC1936, we replicated CHARGE’s genome-wide WMH associations on chromosomes 17 (TRIM65 and TRIM47) and, for the first time, 1 (PMF1).<p></p> Conclusions—Despite not passing multiple testing thresholds individually, these genes collectively are relevant to known WMH associations, proposed WMH mechanisms, or dementia: associations with Alzheimer's disease, late-life depression, ATP production, osmotic regulation, neurodevelopmental abnormalities, and cognitive impairment. If replicated further, they suggest a multifactorial nature for WMH and argue for more consideration of vascular contributions to dementia

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes. An Individual-Participant Data Meta-Analysis

    Get PDF
    IMPORTANCE: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. OBJECTIVE: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. DESIGN, SETTING, AND PARTICIPANTS: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. EXPOSURES: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). MAIN OUTCOMES AND MEASURES: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. RESULTS: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations

    Development of Risk Prediction Equations for Incident Chronic Kidney Disease

    Get PDF
    IMPORTANCE ‐ Early identification of individuals at elevated risk of developing chronic kidney disease  could improve clinical care through enhanced surveillance and better management of underlying health  conditions.  OBJECTIVE – To develop assessment tools to identify individuals at increased risk of chronic kidney  disease, defined by reduced estimated glomerular filtration rate (eGFR).  DESIGN, SETTING, AND PARTICIPANTS – Individual level data analysis of 34 multinational cohorts from  the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected  from April, 1970 through January, 2017. A two‐stage analysis was performed, with each study first  analyzed individually and summarized overall using a weighted average. Since clinical variables were  often differentially available by diabetes status, models were developed separately within participants  with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external  cohorts (N=2,253,540). EXPOSURE Demographic and clinical factors.  MAIN OUTCOMES AND MEASURES – Incident eGFR <60 ml/min/1.73 m2.  RESULTS – In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were  660,856 incident cases of reduced eGFR during a mean follow‐up of 4.2 years. In 781,627 participants  with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean follow‐up of 3.9 years. Equations for the 5‐year risk of reduced eGFR included age, sex, ethnicity, eGFR, history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants  with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction  between the two. The risk equations had a median C statistic for the 5‐year predicted probability of  0.845 (25th – 75th percentile, 0.789‐0.890) in the cohorts without diabetes and 0.801 (25th – 75th percentile, 0.750‐0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%) study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was  similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18 (89%) had a slope of observed to predicted risk between 0.80 and 1.25. CONCLUSIONS AND RELEVANCE – Equations for predicting risk of incident chronic kidney disease developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and  variable calibration in diverse populations

    Development and Validation of the American Heart Association Predicting Risk of Cardiovascular Disease EVENTs (PREVENT) Equations

    No full text
    Multivariable equations are recommended by primary prevention guidelines to assess absolute risk of cardiovascular disease (CVD). However, current equations have several limitations. Therefore, we developed and validated the AHA Predicting Risk of CVD EVENTs (PREVENT) equations among US adults aged 30-79 years without known CVD. The derivation sample included individual-level participant data from 25 datasets (N=3,281,919) between 1992-2017. The primary outcome was CVD (atherosclerotic CVD [ASCVD] and heart failure [HF]). Predictors included traditional risk factors (smoking status, systolic blood pressure, cholesterol, anti-hypertensive or statin use, diabetes) and estimated glomerular filtration rate [eGFR]. Models were sex-specific, race-free, developed on the age-scale, and adjusted for competing risk of non-CVD death. Analyses were conducted in each dataset and meta-analyzed. Discrimination was assessed using Harrell\u27s C-statistic. Calibration was calculated as the slope of the observed vs. predicted risk by decile. Additional equations to predict each CVD subtype (ASCVD, HF) and include optional predictors (urine albumin-to-creatinine ratio [UACR], hemoglobin A1c [HbA1c]), and social deprivation index [SDI]) were also developed. External validation was performed in 3,330,085 participants from 21 additional datasets. Among 6,612,004 adults included, mean (SD) age was 53 (12) years and 56% were female. Over a mean (SD) follow-up of 4.8 (3.1) years, there were 211,515 incident total CVD events. The median C-statistics in external validation for CVD were 0.794 (interquartile interval [IQI]: 0.763-0.809) in female and 0.757 (0.727-0.778) in male participants. The calibration slopes were 1.03 (IQI 0.81 -1.16) and 0.94 (0.81-1.13) among females and males, respectively. Similar estimates for discrimination and calibration were observed for ASCVD- and HF-specific models. The improvement in discrimination was small but statistically significant when UACR, HbA1c, and SDI were added together to the base model to total CVD (ΔC-statistic [IQI] 0.004 [0.004, 0.005] and 0.005 [0.004, 0.007] among females and males, respectively). Calibration improved significantly when UACR was added to the base model among those with marked albuminuria (\u3e300mg/g) (1.05 [0.84-1.20] vs. 1.39 [1.14-1.65], p=0.01). PREVENT equations accurately and precisely predicted risk for incident CVD and CVD subtypes in a large, diverse, and contemporary sample of US adults using routinely available clinical variables
    corecore