247 research outputs found

    Commercial fishery disturbance of the global ocean biological carbon sink

    Get PDF
    Plankton drive a major sink of carbon across the global oceans. Dead plankton, their faeces and the faeces of plankton feeders, form a huge rain of carbon sinking to the seabed and deep ocean, reducing atmospheric CO2 levels and thus helping to regulate the climate. Any change in plankton communities, ecosystems or habitats will perturb this carbon sink, potentially increasing atmospheric CO2. Fishing is a major cause of ocean ecosystem disturbance affecting all trophic levels including plankton, but its potential impact on the carbon sink is unknown. As both fisheries and the carbon sink depend on plankton there is spatial overlap of these fundamental ecosystem services. Here we provide the first global maps of this spatial overlap. Using an upper quartile analysis, we show that 21% of the total upper ocean carbon sink (export) and 39% of fishing effort globally are concentrated in zones of intensive overlap, representing 9% of the ocean surface area. This overlap is particularly evident in the Northeast Atlantic suggesting this region should be prioritised in terms of research and conservation measures to preserve the high levels of sinking carbon. Small pelagic fish dominate catches here and globally, and their exploitation could reduce important faecal pellet carbon sinks and cause trophic cascades affecting plankton communities. There is an urgent need to recognise that, alongside climate change, fishing might be a critical influence on the ability of the ocean to sequester atmospheric CO2. Improved understanding of this influence, and how it will change with the climate, will be important for realising a sustainable balance of the twin needs for productive fisheries and strong carbon sinks

    Which biochemical assay is best for measuring diabetes prevalence?

    Get PDF

    The Production of Hospitable Space: Commercial Propositions and Consumer Co-Creation in a Bar Operation

    Get PDF
    This paper examines the processes through which a commercial bar is transformed into a hospitable space. Drawing on a study of a venue patronized by lesbian, gay, bisexual and transsexual/transgender consumers, it considers how social and commercial forms of hospitality are mobilized. The paper argues that hospitable space has an ideological, normative and situational dimension. More specifically, it suggests the bar’s operation is tied to a set of ideological conceptions, which become the potential basis of association and disassociation among consumers. It examines the forces and processes that shape who participates in the production and consumption of hospitality and how. Finally, it considers the situational, emergent nature of hospitality and the discontinuous production of hospitable space. Rather than focusing exclusively on host-guest or provider-customer relations, which dominates existing work on hospitality, the paper examines how consumers’ perceptions, actions and interactions shape the production of hospitality. By doing so the paper offers an alternative approach to understanding queer spaces, bar operation as well as hospitality

    Derivation of a Protein Risk Score for Cardiovascular Disease Among a Multiracial and Multiethnic HIV+ Cohort

    Get PDF
    Background Cardiovascular disease risk prediction models underestimate CVD risk in people living with HIV (PLWH). Our goal is to derive a risk score based on protein biomarkers that could be used to predict CVD in PLWH. Methods and Results In a matched case-control study, we analyzed normalized protein expression data for participants enrolled in 1 of 4 trials conducted by INSIGHT (International Network for Strategic Initiatives in Global HIV Trials). We used dimension reduction, variable selection and resampling methods, and multivariable conditional logistic regression models to determine candidate protein biomarkers and to generate a protein score for predicting CVD in PLWH. We internally validated our findings using bootstrap. A protein score that was derived from 8 proteins (including HGF [hepatocyte growth factor] and interleukin-6) was found to be associated with an increased risk of CVD after adjustment for CVD and HIV factors (odds ratio: 2.17 [95% CI: 1.58-2.99]). The protein score improved CVD prediction when compared with predicting CVD risk using the individual proteins that comprised the protein score. Individuals with a protein score above the median score were 3.10 (95% CI, 1.83-5.41) times more likely to develop CVD than those with a protein score below the median score. Conclusions A panel of blood biomarkers may help identify PLWH at a high risk for developing CVD. If validated, such a score could be used in conjunction with established factors to identify CVD at-risk individuals who might benefit from aggressive risk reduction, ultimately shedding light on CVD pathogenesis in PLWH

    Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets

    Get PDF
    The Southern Ocean (SO) is an important CO2 reservoir, some of which enters via the production, sinking and remineralization of organic matter. Recent work suggests the fraction of production that sinks is inversely related to production in the SO, a suggestion we confirm from 20 stations in the Scotia Sea. The efficiency with which exported material is transferred to depth (transfer efficiency) is believed to be low in high latitude systems. However, our estimates of transfer efficiency are bimodal, with stations in the seasonal ice zone showing intense losses and others displaying increases in flux with depth. Zooplankton fecal pellets dominated organic carbon flux and at stations with transfer efficiency >100 % fecal pellets were brown, indicative of fresh phytodetritus. We suggest that active flux mediated by zooplankton vertical migration and the presence of sea ice regulate the transfer of organic carbon into the oceans interior in the Southern Ocean

    Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    Get PDF
    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine

    Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis

    Get PDF
    In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further

    Application of a spring-dashpot system to clinical lung tumor motion data

    Get PDF
    A spring-dashpot system based on the Voigt model was developed to model the correlation between abdominal respiratory motion and tumor motion during lung radiotherapy. The model was applied to clinical data comprising 52 treatment beams from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy system, Sapporo, Japan. In Stage 1, model parameters were optimized for individual patients and beams to determine reference values and to investigate how well the model can describe the data. In Stage 2, for each patient the optimal parameters determined for a single beam were applied to data from other beams to investigate whether a beam-specific set of model parameters is sufficient to model tumor motion over a course of treatment. In Stage 1 the baseline root mean square (RMS) residual error for all individually-optimized beam data was 0.90 plus or minus 0.40 mm. In Stage 2, patient-specific model parameters based on a single beam were found to model the tumor position closely, even for irregular beam data, with a mean increase with respect to Stage 1 values in RMS error of 0.37 mm. On average the obtained model output for the tumor position was 95% of the time within an absolute bound of 2.0 mm and 2.6 mm in Stage 1 and 2, respectively. The model was capable of dealing with baseline, amplitude and frequency variations of the input data, as well as phase shifts between the input tumor and output abdominal signals. These results indicate that it may be feasible to collect patient-specific model parameters during or prior to the first treatment, and then retain these for the rest of the treatment period. The model has potential for clinical application during radiotherapy treatment of lung tumors

    The importance of Antarctic krill in biogeochemical cycles

    Get PDF
    Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins – but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean’s largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill

    Glycerol monolaurate prevents mucosal SIV transmission

    Get PDF
    Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission
    corecore