1,745 research outputs found

    Adaptive FE-BE Coupling for Strongly Nonlinear Transmission Problems with Coulomb Friction

    Full text link
    We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L^p- and L^2-Sobolev spaces.Comment: 27 pages, 3 figure

    Self-organized pore formation and open-loop-control in semiconductor etching

    Full text link
    Electrochemical etching of semiconductors, apart from many technical applications, provides an interesting experimental setup for self-organized structure formation capable e.g. of regular, diameter-modulated, and branching pores. The underlying dynamical processes governing current transfer and structure formation are described by the Current-Burst-Model: all dissolution processes are assumed to occur inhomogeneously in time and space as a Current Burst (CB); the properties and interactions between CB's are described by a number of material- and chemistry- dependent ingredients, like passivation and aging of surfaces in different crystallographic orientations, giving a qualitative understanding of resulting pore morphologies. These morphologies cannot be influenced only by the current, by chemical, material and other etching conditions, but also by an open-loop control, triggering the time scale given by the oxide dissolution time. With this method, under conditions where only branching pores occur, the additional signal hinders side pore formation resulting in regular pores with modulated diameter

    Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators

    Get PDF
    We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general

    What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Get PDF
    Biodiversity' is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation, and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European, and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments

    A Preliminary Study of the Insect Galls of Iowa

    Get PDF
    The abnormal growths frequently found on plants and known as insect galls have led to much study of their origin and manner of development. These abnormal plant structures may vary from a simple fold-like gall on a leaf to a highly complex structure resembling a fruit. Insect galls are found on at least 80 families of American plants. Some twelve plant families account for a large percentage of the known galls. Insects produce galls on many species of plants. Practically every part of a plant such as roots, stem, twigs, leaves, buds, flowers and fruits may develop galls

    Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors

    Get PDF
    Myc family proteins promote cancer by inducing widespread changes in gene expression. Their rapid turn-over by the ubiquitin-proteasome pathway is regulated through phosphorylation of Myc Box I and ubiquitination by SCFFbxw7. However, N-Myc protein is stabilized in neuroblastoma by Aurora-A kinase in a manner that is sensitive to certain Aurora-A-selective inhibitors. Here we identify a direct interaction between the catalytic domain of Aurora-A and a site flanking Myc Box I that also binds SCFFbxw7. We determine the crystal structure of the complex between Aurora-A and this region of N-Myc to 1.72 Å resolution. The structure indicates that the conformation of Aurora-A induced by compounds such as alisertib and CD532 is not compatible with binding of N-Myc, explaining the activity of these compounds in neuroblastoma cells and providing a rational basis for the design of cancer therapeutics optimized for destabilization of the complex. We also propose a model for the stabilization mechanism in which binding to Aurora-A alters how N-Myc interacts with SCFFbxw7 to disfavor the generation of Lys48-linked poly-Ub chains

    Amygdala responses to emotionally valenced stimuli in older and younger adults

    Get PDF
    ABSTRACT—As they age, adults experience less negative emotion, come to pay less attention to negative than to positive emotional stimuli, and become less likely to remember negative than positive emotional materials. This profile of findings suggests that, with age, the amygdala may show decreased reactivity to negative information while maintaining or increasing its reactivity to positive information. We used event-related functional magnetic resonance imaging to assess whether amygdala activation in response to positive and negative emotional pictures changes with age. Both older and younger adults showed greater activation in the amygdala for emotional than for neutral pictures; however, for older adults, seeing positive pictures led to greater amygdala activation than seeing negative pictures, whereas this was not the case for younger adults. Older adults experience less negative affect than younger adults in both cross-sectional and longitudinal studies (Carstensen, Pasupathi
    corecore