45 research outputs found

    Non-parametric morphologies of mergers in the Illustris simulation

    Get PDF
    IndexaciĂłn: Web of Science; ScopusWe study non-parametric morphologies of mergers events in a cosmological context, using the Illustris project. We produce mock g-band images comparable to observational surveys from the publicly available Illustris simulation idealized mock images at z = 0. We then measure non-parametric indicators: asymmetry, Gini, M-20, clumpiness, and concentration for a set of galaxies with M-* > 10(10) M circle dot. We correlate these automatic statistics with the recent merger history of galaxies and with the presence of close companions. Our main contribution is to assess in a cosmological framework, the empirically derived non-parametric demarcation line and average time- scales used to determine the merger rate observationally. We found that 98 per cent of galaxies above the demarcation line have a close companion or have experienced a recent merger event. On average, merger signatures obtained from the G-M-20 criterion anti- correlate clearly with the elapsing time to the last merger event. We also find that the asymmetry correlates with galaxy pair separation and relative velocity, exhibiting the larger enhancements for those systems with pair separations d < 50 h(-1) kpc and relative velocities V < 350 km s(-1). We find that the G-M-20 is most sensitive to recent mergers (similar to 0.14 Gyr) and to ongoing mergers with stellar mass ratios greater than 0.1. For this indicator, we compute a merger average observability time-scale of similar to 0.2 Gyr, in agreement with previous results and demonstrate that the morphologically derived merger rate recovers the intrinsic total merger rate of the simulation and the merger rate as a function of stellar mass.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw278

    The metallicity gradients of star-forming regions store information of the assembly history of galaxies

    Get PDF
    The variations in metallicity and spatial patterns within star-forming regions of galaxies result from diverse physical processes unfolding throughout their evolutionary history, with a particular emphasis on recent events. Analysing MaNGA and EAGLE galaxies, we discovered an additional dependence of the mass–metallicity relation (MZR) on metallicity gradients (∇(O/H)). Two regimes emerged for low- and high-stellar mass galaxies, distinctly separated at approximately M⋆ > 109.75. Low-mass galaxies with strong positive ∇(O/H) appear less enriched than the MZR median, while those with strong negative gradients are consistently more enriched in both simulated and observed samples. Interestingly, low-mass galaxies with strong negative ∇(O/H) exhibit high star-forming activity, regardless of stellar surface density or ∇(O/H). In contrast, a discrepancy arises for massive galaxies between MaNGA and EAGLE data sets. The latter exhibit a notable anticorrelation between specific star formation rate and stellar surface density, independent of ∇(O/H), while MaNGA galaxies show this trend mainly for strong positive ∇(O/H). Further investigation indicates that galaxies with strong negative gradients tend to host smaller central black holes in observed data sets, a trend not replicated in simulations. These findings suggest disparities in metallicity recycling and mixing history between observations and simulations, particularly in massive galaxies with varying metallicity gradients. These distinctions could contribute to a more comprehensive understanding of the underlying physics

    Planes of satellites around simulated disk galaxies I: finding high-quality planar configurations from positional information and their comparison to MW/M31 data

    Get PDF
    We address the “plane of satellites problem” by studying planar configurations around two disk galaxies with no late major mergers, formed in zoom-in hydro-simulations. Due to the current lack of good-quality kinematic data for M31 satellites, we use only positional information. So far, positional analyses of simulations are unable to find planes as thin and populated as the observed ones. We follow a novel systematic and detailed plane searching technique to study the properties and quality of planes of satellites, in both simulations or real data. In particular, (i) we extend the four-galaxy-normal density plot method (Pawlowski et al. 2013) in a way designed to efficiently identify high-quality planes (i.e., thin and populated) without imposing extra constraints on their properties, and (ii), we apply it for the first time to simulations. Using zoom-in simulations allows us to mimic Milky Way/M31- like systems regarding the number of satellites involved as well as galactic disk effects. In both simulations, we find satellite planar configurations that are compatible, along given time intervals, with all of the spatial characteristics of observed planes identified using the same methodology. During most of these periods, planes are approximately perpendicular to the galactic disk. However, the fraction of co-orbiting satellites within them is, in general, low, suggesting time-varying satellite membership. We conclude that high-quality positional planes of satellites could be not infrequent in ΛCDM-formed disk galaxies with a quiet assembly history. Detecting kinematically coherent, time-persistent planes demands considering the full six-dimensional phase-space information of satellites

    Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies

    Get PDF
    Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.Fil: Rosito, M. S.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; ArgentinaFil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; ArgentinaFil: Tissera, P. B.. Universidad CatĂłlica de Chile; Chile. Pontificia Universidad CatĂłlica de Chile; ChileFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentin

    The evolution of the oxygen abundance gradients in star-forming galaxies in the eagle simulations

    Get PDF
    We analyse the evolution of the oxygen abundance gradient of star-forming galaxies with stellar mass M∗≄109M⊙ in the EAGLE simulation over the redshift range z = [0, 2.5]. We find that the median metallicity gradient of the simulated galaxies is close to zero at all z, whereas the scatter around the median increases with z. The metallicity gradients of individual galaxies can evolve from strong to weak and vice versa, since mostly low-metallicity gas accretes on to the galaxy, resulting in enhanced star formation and ejection of metal-enriched gas by energy feedback. Such episodes of enhanced accretion, mainly dominated by major mergers, are more common at higher z and hence contribute to increasing the diversity of gradients. For galaxies with negative metallicity gradients, we find a redshift evolution of ∌−0.03 dex kpc−1/ÎŽz⁠. A positive mass dependence is found at z ≀ 0.5, which becomes slightly stronger for higher redshifts and, mainly, for M∗<109.5M⊙⁠. Only galaxies with negative metallicity gradients define a correlation with galaxy size, consistent with an inside-out formation scenario. Our findings suggest that major mergers and/or significant gas accretion can drive strong negative or positive metallicity gradients. The first ones are preferentially associated with disc-dominated galaxies, and the second ones with dispersion-dominated systems. The comparison with forthcoming observations at high redshift will allow a better understanding of the potential role of metallicity gradients as a chemical probe of galaxy formation
    corecore