
Automatic Extraction of Generic House Roofsfrom High Resolution Aerial Imagery ?Frank Bignone, Olof Henricsson, Pascal Fua+ and Markus StrickerCommunications Technology LaboratorySwiss Federal Institute of Technology ETHCH-8092 Zurich, Switzerland+SRI International, Menlo Park, CA 94025, USAAbstract. We present a technique to extract complex suburban roofsfrom sets of aerial images. Because we combine 2-D edge information,photometric and chromatic attributes and 3-D information, we can dealwith complex houses. Neither do we assume the roofs to be at or recti-linear nor do we require parameterized building models. From only oneimage, 2-D edges and their corresponding attributes and relations areextracted. Using a segment stereo matching based on all available im-ages, the 3-D location of these edges are computed. The 3-D segmentsare then grouped into planes and 2-D enclosures are extracted, therebyallowing to infer adjoining 3-D patches describing roofs of houses. Toachieve this, we have developed a hierarchical procedure that e�ectivelypools the information while keeping the combinatorics under control. Ofparticular importance is the tight coupling of 2-D and 3-D analysis.1 IntroductionThe extraction of instances of 3-D models of buildings and other man-madeobjects is currently a very active research area and an issue of high importance tomany users of geo-information systems, including urban planners, geographers,and architects.Here, we present an approach to extract complex suburban roofs from setsof aerial images. Such roofs can neither be assumed to be at nor to have sim-ple rectangular shapes. In fact, their edges may not even form ninety degreesangles. They do tend, however, to lie on planes. This speci�c problem is a typi-cal example of the general Image Understanding task of extracting instances ofgeneric object classes that are too complex to be handled by purely image-basedapproaches and for which no speci�c template exists.Because low-level methods typically fail to extract all relevant features andoften �nd spurious ones, existing approaches use models to constrain the problem[15]. Traditional approaches rely almost exclusively on the use of edge-basedfeatures and their 2-D or 3-D geometry. Although 3-D information alleviates theproblem, instantiating the models is combinatorially explosive. This di�culty? We acknowledge the support given to this research by ETH under project 13-1993-4.
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is typically handled by using very constrained models, such as at rectilinearroofs or a parameterized building model, to reduce the size of the search space.These models may be appropriate for industrial buildings with at roofs andperpendicular walls but not for the complicated suburban houses that can befound in scenes such as the one of Fig. 1.It has been shown, however, that combining photometric and chromatic re-gion attributes with edges leads to vastly improved results over the use of eitheralone [6, 11]. The houses of Fig. 1 require more exible models than the stan-dard ones. We de�ne a very generic roof primitive: we take it to be a 3-D patchthat is roughly planar and encloses a compact polygonal area with consistentchromatic and luminance attributes. We therefore propose an approach thatcombines 2-D and 3-D edge geometry with region attributes. This is not easy toimplement because the complexity of the approach is likely to increase rapidlywith the number of information sources. Furthermore, these sources of informa-tion should be as robust as possible but none of them can be expected to beerror-free and this must be taken into account by the data-fusion mechanism.
Figure 1 Two of the four registered 1800�1800 images that are part of our residentialdataset (Courtesy of Institute of Photogrammetry and Geodesy at ETH Z�urich).To solve this problem, we have developed a procedure that relies on hierarchi-cal hypothesis generation, see Fig. 2. The procedure starts with a multi-imagecoverage of a site, extracts 2-D edges from a source image, computes corre-sponding photometric and chromatic attributes, and their similarity relation-ships. Using both geometry and photometry, it then computes the 3-D locationof these edges and groups them to in�nite planes. In addition, 2-D enclosuresare extracted and combined with the 3-D planes to instances of our roof prim-itive, that is 3-D patches. All extracted hypotheses of 3-D patches are rankedaccording to their geometric quality. Finally, the best set of 3-D patches thatare mutually consistent are retained, thus de�ning a scene parse. This procedurehas proven powerful enough so that, in contrast to other approaches to generic



roof extraction (e.g. [14, 6, 4, 13, 7, 12]), we need not assume the roofs to be ator rectilinear or use a parameterized building model.Note that, even though geometric regularity is the key to the recognition ofman-made structures, imposing constraints that are too tight, such as requiringthat edges on a roof form ninety degrees angles, would prevent the detection ofmany structures that do not satisfy them perfectly. Conversely, constraints thatare too loose will lead to combinatorial explosion. Here we avoid both problemsby working in 2-D and 3-D, grouping only edges that satisfy loose coplanarityconstraints, weak 2-D geometric and similarity constraints on their photometricand chromatic attributes. None of these constraints is very tight but, becausewe pool a lot of information from multiple images, we are able to retain onlyvalid object candidates.
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RelationsFigure 2 Our hierarchical framework, a feed-forward scheme, where several compo-nents in the 2-D scheme mutually exchange data and aggregates with the 3-D modules.We view the contribution of our approach as the ability to robustly com-bine information derived from edges, photometric and chromatic area properties,geometry and stereo, to generate well organized 3-D data structures describingcomplex objects while keeping the combinatorics under control. Of particularimportance is the tight coupling of 2-D and 3-D analysis.For our experiments, we use a state-of-the-art dataset produced by the Insti-tute of Geodesy and Photogrammetry at ETH Z�urich. It consists of a residentialand an industrial scene with the following characteristics: 1:5,000 image scalevertical aerial photography, four-way image overlap, color imagery, geometricallyaccurate �lm scanning with 15 microns pixel size, precise sensor orientation, and



accurate ground truth including DTM and manually measured building CAD-models. The latter are important to quantitatively evaluate our results.Our hierarchical parsing procedure is depicted in Fig. 2. Below we describeeach of its components: 2-D edge extraction, computation of photometric andchromatic attributes, de�nition of similarity relationships among 2-D contours,3-D edge matching and coplanar grouping, extraction of 2-D enclosures, and�nally, generation and selection of candidate 3-D object models. Last, we presentand discuss our results.2 Attributed Contours and their Relations2.1 Edge Detection and Edgel AggregationOur approach is based on grouping contour segments. The presented work doesnot require a particular edge detector, however, we believe it is wise to use thebest operator available to obtain the best possible results. For this reason weuse the SE energy operator (suppression and enhancement) recently presentedin [8]. The operator produces a more accurate representation of edges and linesin images of outdoor scenes than traditional edge detectors due to its superiorhandling of interferences between edges and lines, for example at sharp corners.The edge and line pixels are then aggregated to coherent contour segmentsby using the algorithm described in [10]. The result is a graph representation ofcontours and vertices, as shown in Fig. 3B. Each contour has geometric attributessuch as its coarse shape, that is straight, curved or closed.
A C

Figure 3 (A) a cut-out 350 � 350 from the dataset in Fig.1, (B) The resultingattributed graph with all its contours and vertices, (C) the anking regions withtheir corresponding median luminance attributes. The background is black.2.2 Photometric and Chromatic Contour AttributesThe contour graph contains only basic information about geometry and connec-tivity. To increase its usefulness, image attributes are assigned to each contourand vertex. The attributes reect either properties along the actual contour(e.g. integrated gradient magnitude) or region properties on either side, such aschromatic or photometric homogeneity.Since we are dealing with fairly straight contours the construction of theanking regions is particularly simple. The anking region is constructed by a



translation of the original contour in the direction of its normal. We de�ne aanking region on each side of the contour. When neighboring contours interferewith the constructed region, a truncation mechanism is applied. In Fig. 3C wedisplay all anking regions. For more details we refer to [9].To establish robust photometric and chromatic properties of the anking re-gions, we need a color model that accurately represents colors under a varietyof illumination conditions. We chose to work with HVC color spaces since theyseparate the luminant and chromatic components of color. The photometric at-tributes are computed by analyzing the value component, whereas the chromaticattributes are derived from the hue and chroma components. As underlying colorspace we use the CIE(L*a*b*) color space because of its well based psychophysicalfoundation; it was created to measure perceptual color di�erences [16].Since each anking region is assumed to be fairly homogeneous (due to theway it is constructed), the data points contained in each region tend to concen-trate in a small region of the color space. As we deal with images of aerial sceneswhere disturbances like chimneys, bushes, shadows, or regular roof texture arelikely to be within the de�ned regions, the computation of region properties musttake outliers into account. Following the approach in [11] we represent photo-metric attributes with the median luminance and the interquartile range (IQR),see Fig. 3C. The chromatic region properties are computed analogously from theCIE(a*b*) components and are represented by the center of the chromatic clusterand the corresponding spreads.2.3 Contour Similarity RelationsAlthough geometric regularity is a major component in the recognition of man-made structures, neglecting other sources of information that corroborate therelatedness among straight contours imposes unnecessary restrictions on the ap-proach. We propose to form a measure that relates contours based on similarityin position, orientation, and photometric and chromatic properties.For each straight contour segment we de�ne two directional contours pointingin opposite directions. Two such directional contours form a contour relationwith a de�ned logical interior. For each contour relation we compute four scoresbased on similarity in luminance, chromaticity, proximity, and orientation andcombine them to a single similarity score by summation.Three consecutive selection procedures are applied, retaining only the bestnon-conicting interpretations. The �rst selection involves only two contours(resp. four directional contours) and aims at reducing the eight possible inter-pretations to less or equal to four. The second selection procedure removes short-cuts among three directed contours. The �nal selection is highly data-driven andaims at reducing the number of contour relations from each directed contour toonly include the locally best ones. All three selection procedures are based onanalysis of the contour similarity scores. Due to lack of space we refer to [11] formore details.



3 Segment Stereo MatchingMany methods for edge-based stereo matching rely on extracting straight 2-Dedges from images and then matching them [1]. These methods, although fastand reliable, have one drawback: if an edge extracted from one image is occludedor only partially de�ned in one of the other images, it may not be matched.In outdoor scenes, this happens often, for example when shadows cut edges.Another class of methods [2] consists of moving a template along the epipolar lineto �nd correspondences. It is much closer to correlation-based stereo and avoidsthe problem described above. We propose a variant of the latter approach forsegment matching that can cope with noise and ambiguities. Edges are extractedfrom only one image (the source image) and are matched in the other imagesby maximizing an \edginess measure" along the epipolar line. The source imageis the nadir (most top-view) image because it is assumed to contain few (ifany) self-occluded roof parts. Geometric and photometric constraints are usedto reduce the number of 3-D interpretations of each 2-D edge. We outline thisapproach below and refer the interested reader to [3] for further details.
A BFigure 4 (A) Matched 3-D segments. Notice the false matches.(B) Manually measured 3-D CAD model.For a given edge in the source image we want to �nd the location of its cor-respondences in the other image. A segment is described by the position of itsmiddle point, its orientation and length. We use the epipolar geometry to con-strain the location in the second image so that only 2 parameters are requiredto describe its counterpart: sm, the position along the epipolar line, and � theorientation. The length l, in the other images, is predicted by using (sm; �) andthe epipolar geometry. For a given sm and �, we evaluate its probability of beingcorrect by measuring the edginess f . It is a function of the image gradient:f(sm; �) = r= l2Xr=� l2 kG(r)k � e� (���(r))22�2where G(r) is the image gradient at r, �(r) its orientation. The function f ismaximum when the virtual segment lies on a straight edge and decreases quickly



with any translation or rotation. Further, f can be large even if if the edge isonly partially visible in the image, that is occluded or broken.The search for the most likely counterparts for the source edge now reducesto �nding the maxima of f by discretizing � and sm and performing a 2-D search.In the presence of parallel structures, the edginess typically has several maximathat cannot be distinguished using only two images. However, using more thantwo images, we can reduce the number of matches and only keep the very bestby checking for consistency across image pairs.We can further reduce the hypothesis set by using the photometric edge at-tributes of section 2.2 after photometric equalization of the images. We computethe 2-D projections of each candidate 3-D edge into all the images. The imagephotometry in areas that pertains to at least one side of the 2-D edges should besimilar across images. Figure 4 shows all matched 3-D segments as well as themanually measured CAD model for the house in Fig. 3A.4 Coplanar Grouping of 3-D SegmentsTo group 3-D segments into in�nite planes, we propose a simple method thataccounts for outliers in the data. It proceeds in two steps:{ Explore: We �rst �nd an initial set of hypotheses using a deterministic ver-sion of the RANSAC approach [5]: Given the relationships of section 2.3 andthe 3-D geometry of the segments, we �t planes to pairs of related contoursthat are roughly coplanar. We then extend the support of those planes byiteratively including segments that are related to the hypothesis and thatare close enough to the plane. After each iteration the plane parameters arere-approximated.{ Merge: We now have a set of plane hypotheses. Because all the edges belong-ing to the same physical plane may not be related in the sense of section 2.3,this plane may give rise to several hypotheses that must be merged. This isdone by performing an F-test on pairs of parallel planar hypotheses to checkwhether or not they describe the same plane.
Figure 5 Selection of planes extracted from the 3-D segments of the house in Fig. 3A.



Each plane in Fig. 5 consists of a number of 3-D segments, some of whichare correctly matched and do belong to a planar object part. However, quite afew 3-D segments are incorrectly matched and accidentally lie on the plane andother segments, such as the contours on the ground aligned with the roof plane,are correctly matched but do not belong to the object part.5 Extracting and Selecting 2-D EnclosuresIn the preceding section we presented an approach to group 3-D segments intoin�nite planes. However, only a subset of all segments on each plane actuallybelongs to valid 3-D patches, see Fig. 5. To obtain an ordered list of 2-D con-tours describing a 3-D patch, we propose to group contours in 2-D where morecomplete data is available and subsequently merge the extracted enclosures withthe corresponding planes. The tight coupling between the 2-D and 3-D processesplays an important role; the extracted planes that are not vertical initialize theenclosure �nding algorithm. We therefore do not need to �nd all possible 2-Denclosures, only those that overlap with non-vertical planes.We use the edge and region based approach described in [11] since it allowsto group contours on other grounds than geometric regularity. The method con-sists of de�ning contour similarity relations (section 2.3), which are then used tobuild a relations graph, in which each cycle de�nes a 2-D enclosure. At last, allextracted 2-D enclosures are ranked according to simple geometric shape criteria.5.1 Extracting 2-D EnclosuresInstances of 2-D roof-primitives can be found by grouping related contours topolygonal shaped structures. A computationally attractive approach is to builda relations graph and use it to �nd these structures [6, 12]. By construction eachcycle in the relations graph describe an enclosure. Each contour relation de�nea node in the graph and two nodes are linked together if they have a compatiblydirected contour. We use a standard depth-�rst search algorithm to �nd cyclesin the directed relations graph.The procedure work as follows: select a not already used node that belongsto the plane and �nd all valid cycles in the graph given this start node. Pick thenext not already used node on the same plane and iterate the procedure untilthere are no more nodes left. A valid cycle is a set of directed contours thathave a boundary length not exceeding a large value and that does not form aself-loop; the boundary of the enclosure must be compact.5.2 Selecting 2-D EnclosuresThe above algorithm produces for each plane a set of 2-D enclosure hypotheses.To alleviate the fusion of enclosures and planes, we rank the enclosures withineach plane according to simple geometrical shape criteria. We assume that eachroof part has a compact and simple polygonal shape. In addition we require alarge overlap between the contours in the 2-D enclosure and the corresponding3-D segments of the plane. We propose the following criteria:



Shape simplicity Shape simplicity is de�ned as number of straight contoursrequired to represent the enclosure boundary (including missing links). Givenan error tolerance, we use a standard polygon approximation algorithm tocompute the required number of straight lines. The simpler the descriptionof a 2-D enclosure is, the more likely it is that it will describe a roof part.Shape compactness Compactness is de�ned as the squared length of the bound-ary of the enclosure divided by the enclosed area.3-D completeness The 3-D completeness is de�ned as the ratio of the lengthof the 3-D contours that lie on the enclosure boundary and on the plane,with respect to the total length of the enclosure boundary. This measurewill be high whenever a large portion of the extracted 2-D contours havecorrectly matched 3-D segments that lie on the same in�nite plane.Figure 6 shows a few representative 2-D enclosures for the larger planes of thehouse in Fig. 3A. Two thresholds are applied, one for shape simplicity (� 10)and one for 3-D completeness (� 0:4). Together with the 3-D patch consistencytest in next section these thresholds preclude highly unlikely hypotheses of 2-Denclosures before fusing them with planes to hypotheses of 3-D patches.
Figure 6 A few representative 2-D enclosures for the larger planes.6 Finding Coherent 3-D PatchesEach 2-D enclosure describes a possible boundary description of the correspond-ing 3-D plane. It is reasonable to assume that roofs are usually constructed ofadjoining planes. For this reason, only hypotheses of 3-D patches that mutuallyadjoin with other 3-D patches along their boundaries are retained. In additionwe require that the 2-D contours belonging to the adjoining boundary of the 3-Dpatches are collinear in 2-D. Those 3-D patches that ful�ll these constraints areconsistent.



The iterative procedure initially selects a subset of 3-D patches and veri�esthe mutual consistency along the boundaries. If one or more 3-D patches donot ful�ll this consistency, they are rejected and a new subset of 3-D patches isselected. Moreover, the subset of 3-D patches should be maximally consistent,i.e. have the maximum number of mutually consistent boundaries. The orderof selection is initially based on shape simplicity, and in a second step on theproduct of the normalized compactness and 3-D completeness. To obtain the 3-Dcoordinates of those contours that are contained in the 2-D enclosure but not onthe plane, we project their endpoints onto the plane. The result is a complete3-D boundary for each plane that is likely to describe a roof.7 ResultsWe use the presented framework to extract complex roofs of houses in suburbanscenes, see Fig. 1. The process is initialized by selecting a rectangular windowenclosing the same house in all four images. It has been demonstrated [7] thatthis initialization procedure can be automated by locating elevation blobs in thedigital surface model. After this initialization, the roof is automatically extracted.The roof depicted in Fig. 7A is complex because it consists of several adjoin-ing planar and non-rectangular shapes. The feature extraction �nds 171 straight2-D edges. The segment stereo matching produces 170 3-D segments, and thecoplanar grouping extracts 33 in�nite planes of which 7 are mutually adjoin-ing and non-vertical. Given these 7 non-vertical planes, the algorithm �nds 373valid 2-D enclosures (resp. 3-D patches). The �ve 3-D patches in Fig. 7B are�nally selected since they maximizes the geometrical shape score and mutualconsistency among all 3-D patches. The result is a 3-D CAD model with 3-Dsegments, 3-D planes and their topology. This procedure yields the main partsof the roof, however, 3-D patches that are not mutually consistent with the �nalset of 3-D patches, but nevertheless belongs to the house, are not included. Onesuch example is the 3-D patch describing the dormer window in Fig. 7A.
A BFigure 7 (A) cut-out from the aerial image in Fig.1A, (B) the recon-structed house roof in 3-D.In Fig. 8 we demonstrate the performance of our approach on the entirescene in Fig. 1. To the automatically extracted CAD models of the roofs weadd arti�cial vertical walls. The height of the vertical walls is estimated through



the available digital terrain model (DTM). Ten of the twelve house roofs areextracted, nine of them with a high degree of accuracy and completeness. Themarked house to the right is not complete, since the algorithm fails to extractthe two triangular shaped planes, however, the corresponding 2-D enclosures arecorrectly extracted. The algorithm fails to extract the two upper left houses.The lower of the two is under construction and should not be included in theperformance analysis. Even manual measuring this house is troublesome. Theupper house is complicated because a bunch of trees cast large shadows onthe right roof part. Because of these shadows the algorithm fails to �nd thecorresponding plane, however, the left roof part is correctly reconstructed.
Figure 8 The result of running the algorithm on all houses in the scene ofFig.1. The arti�cial vertical walls are added and projected down to the ground.The ground height is estimated through the digital terrain model (DTM).8 Conclusions and Future WorkWe have addressed the problem of reconstructing complex objects in real imagesfor which no speci�c template exists. We have implemented a working frame-work for the purpose of extracting complicated and generic roofs from sets ofaerial images. The framework successfully performs the following tasks: hierar-chical integration of multiple data sources, generic shape extraction, and e�cienthypothesis generation and selection.We combine geometry, photometry, chromaticity and stereo information aboutedges and their anking regions. We thus make e�ective use of much of the avail-able 2-D and 3-D information present in several images of a given site. As a result,our procedure is more robust than one that uses only partial information. Wefurther use weak coplanarity constraints together with a generic extraction of2-D enclosures; a combination that allow us to e�ectively �nd instances of 3-Dpatches. The polygonal shape of these 3-D patches can be arbitrarily complex.Future work will concentrate on: improvement of each individual module(whenever possible), better exploitation of existing knowledge, e.g. DSMs and
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