23 research outputs found

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    La Relación Entre la Motivación Docente y Variables de la Organización: Revisión de la Literatura

    Get PDF
    Abstract Teacher motivation plays a central role in education because ofitsimpacton student motivation. Previous reviews of teacher motivation have focused on individual variables and psychopathology indicators. However, it is also important to understand the effect of organizational variableson teacher motivationbecause these highlightthe contextthat the teacher is a part of(i.e.,the school). The literature review in this paper analysed studies related to teacher motivation and a pre-defined group of organizational variablesthat werepublished between 1990 and 2014 in several electronic databases.The study found that organizational culture was the most studied variable associated with teacher motivationand most studies in this area were published between 2010 and 2014.Further,there was a prevalence of quantitative studies. This paper concludes with the theoreticaland practical implications of the results,as well assuggestions for future research directions

    Temporal-spatial profiling of pedunculopontine galanin-cholinergic neurons in the lactacystin rat model of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates a multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor- and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, whilst being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilising the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration

    Altered vesicular glutamate transporter expression in human temporal lobe epilepsy with hippocampal sclerosis

    Get PDF
    Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study, we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS), International League Against Epilepsy type 1 (ILAE type 1) compared to autopsy controls, using quantitative polymerase chain reaction and semi-quantitative western blotting. mRNA expression levels of the VGLUTs are unaffected in hippocampal epileptic tissue compared to autopsy controls. At the protein level, VGLUT1 expression remains unaltered, while VGLUT2 is significantly decreased and VGLUT3 protein is significantly increased in hippocampal biopsies from TLE patients compared to controls. Our findings at the protein level can be explained by previously described histopathological changes observed in HS. Although VGLUTs have been repeatedly investigated in distinct rodent epilepsy models, their expression levels were hitherto not fully unraveled in the most difficult-to-treat form of epilepsy: TLE with HS ILAE type 1. We here, demonstrate for the first time that VGLUT2 protein expression is significantly decreased and VGLUT3 protein is significantly increased in the hippocampus of patients suffering from TLE with HS ILAE type 1 compared to autopsy controls

    Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter.

    No full text
    The astrocytic cystine/glutamate antiporter system x represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system x, xCT (xCT mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT mice. A proteomic and kinomic screen of the striatum of xCT mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system x plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior
    corecore